Лекарственный вестник. 2022. Т. 23, № 2. С. 40–43. **Оригинальные исследования** Научная статья УДК 615.9

ОСТРАЯ ТОКСИЧНОСТЬ ПРОТИВОМИГРЕНОЗНОГО СОЕДИНЕНИЯ РУ-31 ПРИ ВНУТРИЖЕЛУДОЧНОМ ВВЕДЕНИИ У КРЫС

Кира Тимуровна Султанова ^{1 ⊠}, Дмитрий Сергеевич Яковлев ², Людмила Степановна Мазанова ³

Волгоградский государственный медицинский университет, Волгоград, Россия 1,2 кафедра фармакологии и биоинформатики, 3 Научный центр инновационных лекарственных средств с опытно-промышленным производством 1,2 Волгоградский медицинский научный центр, лаборатория экспериментальной фармакологии, Волгоград, Россия

sultanova.pharma@gmail.com, https://orcid.org/0000-0002-9846-8335
dypharm@list.ru, https://orcid.org/0000-0001-8980-6016
³lydmila.mazanova@yandex.ru

Аннотация. Необходимым этапом доклинического исследования нового вещества, обладающего выраженными противомигренозными свойствами, является установление характера и выраженности повреждающего действия на организм экспериментальных животных и оценка безопасности его действия. При изучении токсического действия соединения PУ-31 на данном этапе исследований определены переносимые и токсические дозы, выявлены наиболее чувствительные к изучаемому веществу органы и системы организма. ЛД₅₀ соединения при внутрижелудочном введении половозрелым крысам самцам составляет 549,55 (991,24–304,67) мг/кг, крысам самкам — 499,28 (782,33–318,64) мг/кг, что, с учетом классификации токсичности по И. В. Березовской и И. В. Саноцкого, в соответствии с ГОСТ 12.1.007-76, относит изучаемое соединение к 3-му классу токсичности и соответствует умеренно токсичным веществам.

Ключевые слова: 5- HT_{24} -антагонист, PV-31, III_{50} , острая токсичность

Финансирование: исследование выполнялось в рамках государственного контракта № 14.N.08.11.0159 от 02.06.2017 г.

Мигрень является распространенным хроническим нейроваскулярным заболеванием, характеризующимся приступами тяжелой головной боли и нарушениями автономной нервной системы, приводящими к снижению работоспособности и ухудшению качества жизни пациентов. Нейрофизиологические механизмы формирования приступа мигрени реализуются через различные нейрохимические системы, в том числе и посредством серотонинергической нейромедиаторной системы. Влияние серотонина на тригеминоваскулярную систему определяется типом рецепторов, с которыми он взаимодействует. Так, констрикторные реакции сосудов мозга на серотонин реализуются через 5-НТ_{2А}-рецепторы. Их активация инициирует

возникновение болевого приступа и потенцирует проведение ноцицептивной информации. Кроме того, участие серотонина в патогенезе мигрени связывают с усилением активации тромбоцитов перед началом приступа и уменьшением концентрации тромбоцитарного серотонина.

В настоящее время препараты для специфической терапии мигренозного приступа из группы серотонинергических средств представлены преимущественно агонистами серотониновых рецепторов 1В и 1D подтипа — триптанами. Следует отметить, что применение препаратов этой группы не всегда достаточно эффективно, часто плохо переносятся пациентами. Исходя из чего, разработка новых препаратов с влиянием на иные звенья патогенеза мигрени, является актуальной задачей. Ранее нами было выявлено новое производное 1-(2-диэтиламиноэтил)-2-(4-метоксифенил)имидазо[1,2-а]бензимидазола — соединение РУ-31 [1], обладающее антагонистической активностью в отношении 2A подтипа серотониновых рецепторов, демонстрирующее противомигренозное действие.

Для дальнейшей разработки актуальным вопросом являлось детальное исследование острой токсичности соединения РУ-31 с определением переносимых, токсических и летальных доз.

Цель работы

Изучить острую токсичность соединения РУ-31 при пероральном пути введения у крыс.

Методика исследования

Изучаемое соединение дигидрохлорид 1-(2-диэтиламиноэтил)-2-(4-метоксифенил)-имида-зо[1,2-а]бензимидазола — соединение РУ-31 синтезировано в ФГАОУ ВО «Южный федеральный университет», Россия (18.07.2017, опытный образец 002, акт о наработке № 2, лабораторный регламент № 2/17 от 13.07.2017).

Для изучения острой токсичности использовались половозрелые крысы (самцы и самки), согласно рекомендациям, изложенным в Руководстве по проведению доклинических исследований лекарственных средств [2]. Масса крыс к началу введения составляла 180-220 г, из которых было сформировано 16 экспериментальных групп по 5 особей в каждой – 2 контрольные (самцы и самки) и 12 групп для изучаемого соединения в дозах 50, 100, 300, 500, 1 000, 1500, 2000 мг/кг (самцы) и 50, 100, 200, 500, 750, 1 000, 1300 мг/кг (самки). В каждой группе крысы были рандомизированы по массе тела. Животные содержались в условиях вивария, соответствующих санитарным нормам, при свободном доступе к воде и корму, при естественном освещении и температуре окружающего воздуха от 20 до 22 °C. За 12 часов перед введением изучаемого соединения животные были лишены корма. Индивидуальный объём вводимой дозы для каждого животного рассчитывался исходя из значений массы тела и однократно интрагастрально вводился с использованием атравматического зонда в виде водного раствора. После введения изучаемого соединения РУ-31 (дистиллированной воды в контрольных группах) за животными производилось непрерывное наблюдение, фиксировалась гибель или признаки токсических проявлений в течение 6 часов в первые сутки, через 24 часа и в последующие дни эксперимента через каждые 12 часов. Период наблюдения за животными составил 14 дней. Регистрировали общее состояние животных, состояние шерстяного и кожного покрова, окраску слизистых оболочек, наличие в них кровоизлияний, интенсивность и характер спонтанной двигательной активности, наличие судорог, реакции на тактильные, болевые, звуковые раздражители, частоту дыхательных движений.

По результатам гибели животных производился расчёт величин ЛД $_{16}$, ЛД $_{50}$, ЛД $_{84}$ по методу Литчфилда и Уилкоксона с использованием регрессионной статистики (MS Excel 2003).

Результаты исследования и их обсуждение

При изучении острой токсичности соединения РУ-31 на крысах при внутрижелудочном введении были созданы опытные и контрольная группы крыс. В каждой группе крысы были рандомизированы по массе тела. В табл. 1 представлены основные симптомы интоксикации, наблюдаемые у животных в зависимости от вводимой дозы.

В ходе двухнедельного наблюдения значимых случаев отдаленной гибели животных отмечено не было.

По результатам гибели крыс рассчитаны величины $\Pi Д_{50}$, $\Pi Д_{16}$ и $\Pi Д_{84}$ исследуемого соединения РУ-31 по методу Литчфилда и Уилкоксона. Величина острой токсичности через 14 суток после однократного внутрижелудочного введения крысам с указанием стандартной ошибки представлена в табл. 2.

Таблица 1 Клиника интоксикации при внутрижелудочном пути соединения РУ-31 в сублетальных дозах у крыс

Доза, мг/кг	Клиника интоксикации
50	Снижение груминга
100	Сокращение локомоций с нарушением координации движений
300	Снижение груминга
500	Снижение локомоций и реакций на внешние раздражители, отсутствие груминга
750	Увеличение частоты дыхания, снижение локомоций, реакций на внешние раздражители, отсутствие груминга
1000	Увеличение частоты дыхания, снижение локомоций, груминга, снижение реакций на внешние раздражители
1300	Увеличение частоты дыхания, снижение локомоций, реакций на внешние раздражители, отсутствие груминга, судорожный синдром
1500	Снижения спонтанной подвижности с нарушением координации движений и угнетением реакций на внешние раздражители, отсутствие груминга, седация, судорожный синдром
2000	Снижения локомоций с нарушением координации движения, угнетение реакций на внешние раздражители, увеличение частоты дыхания, отсутствие груминга, седация, судорожный синдром

Таблица 2 Показатели острой токсичности соединения РУ-31 через 14 суток после однократного внутрижелудочного введения белым беспородным крысам (мг/кг)

Пол животных	ЛД ₁₆	ЛД ₅₀	ЛД ₈₄
Various constitu	150,32	549,55	2008,99
Крысы самцы	271,15-83,34	991,24–304,67	3623,68–1113,81
Verson consum	227,27	499,28	1096,86
Крысы самки	356,11–145,04	782,34–318,64	1718,70–700,01

Статистическая обработка с использованием метода Литчфилда и Уилкоксона с использованием регрессионной статистики (MS Excel 2003).

Исходя из представленных расчетов границ $\Pi Д_{50}$ и с учетом классификации токсичности по И. В. Березовской и И. В. Саноцкого [3, 4], можно заключить, что соединение PУ-31 в соответствии с ГОСТ 12.1.007-76 может быть отнесена к 3-му классу токсичности, что соответствует умеренно токсичным веществам.

При макроскопическом исследовании крыс, получавших соединение РУ-31 в дозах 50-300 мг/кг патологических изменений внутренних органов выявлено не было. У крыс, получавших соединение РУ-31 в более высоких дозах (500-2000 мг/кг) при макроскопическом исследовании было отмечено, что головной мозг содержит темно-красный экссудат, кровенаполнение сосудов повышено в области мозжечка, консистенция мозга упругая, на разрезе вещество мозга влажное, блестящее. Других изменений внутренних органов при макроскопическом исследовании выявлено не было. Учитывая внутрижелудочный путь введения соединения РУ-31, следует отметить, что складчатость слизистой оболочки желудка сохранена, признаков раздражающего действия вещества не выявлено, что, вероятно, может свидетельствовать об отсутствии местнораздражающего действия. При последующем наблюдении за крысами опытных групп в течение 14 суток было отмечено, что общее состояние животных, получавших соединение РУ-31, восстанавливалось до исходного уровня, гендерных различий в подвижности и реактивности в опытных группах и в контрольной группе не выявлено. Указанные эффекты нивелировались до состояния контрольных показателей через 24 часа наблюдений, состояние особей крыс соответствовало норме и особям контрольной группы.

Заключение

- $1.\, \mathrm{Л}\mathrm{Д}_{50}$ соединения РУ-31 при внутрижелудочном введении половозрелым крысам самцам при 14-дневном наблюдении составляет 549,55 (991,24–304,67) мг/кг, крысам-самкам 499,28 (782,33–318,64) мг/кг.
- 2. При макроскопическом исследовании крыс, получавших соединение РУ-31 в высоких дозах, отмечено повышенное кровенаполнение

сосудов мозжечка, наличие темно-красного экссудата в черепной коробке.

3. С учетом классификации токсичности по И. В. Березовской и И. В. Саноцкого и в соот-

ветствии с ГОСТ 12.1.007-76 изучаемое соединение РУ-31 может быть отнесено к 3-му классу токсичности, что соответствует умеренно токсичным веществам.

СПИСОК ИСТОЧНИКОВ

- 1. *Патент № 2465901 Российская Федерация*. Средства, проявляющие свойства антагонистов серотониновых 5-НТ_{2A}-рецепторов: № 23: 2012 / А. А. Спасов, В. А. Анисимова, Д. С. Яковлев, В. И. Петров, В. И. Минкин.
- 2. Руководство по проведению доклинических исследований лекарственных средств / А. Н. Миронов [и др.]. 2012. С. 80–93.
- 3. *Березовская И. В.* Классификация химических веществ по параметрам острой токсичности при парентеральных способах введения // Хим.-фарм. журн. 2003. Т. 37, № 3. С. 32–34.
- 4. Методы определения токсичности и опасности химических веществ (токсикометрия) / под ред. И. В. Саноцкого. М.: Медицина, 1970. С. 343.

Информация об авторах

Султанова К. Т. – кандидат медицинских наук, ассистент кафедры фармакологии и биоинформатики Волгоградского государственного медицинского университета, младший научный сотрудник лаборатории экспериментальной фармакологии Волгоградского медицинского научного центра, Волгоград, Россия

Яковлев Д. С. – доктор медицинских наук, профессор кафедры фармакологии и биоинформатики Волгоградского государственного медицинского университета, старший научный сотрудник лаборатории экспериментальной фармакологии Волгоградского медицинского научного центра, Волгоград, Россия

Мазанова Л. С. – кандидат медицинских наук, старший научный сотрудник Научного центра инновационных лекарственных средств с опытно-промышленным производством, Волгоград, Россия

Авторы заявляют об отсутствии конфликта интересов.

Статья поступила в редакцию 30.03.2022; одобрена после рецензирования 28.04.2022; принята к публикации 12.05.2022