Эти данные говорят о возможности дифференциальной диагностики различных клинических форм, оценки тяжести заболевания и прогнозирования течения ИБС с учетом интегрального показателя Ф.

ЗАКЛЮЧЕНИЕ

Комплексная оценка микроморфологических свойств крови, состояния ПОЛ, АОС и ТКО у больных с различными формами ИБС демонстрирует взаимосвязь выявленных нарушений и указывает на участие сопряженных изменений этих систем в формировании клинического течения заболевания. Проведенные нами исследования показали, что у больных ИБС изменения агрегационных свойств тромбоцитов, вязкости крови и уровня ПОЛ имеют в целом однородный характер при различных клинических вариантах течения. Это обусловлено тем, что в реализации процесса агрегации тромбоцитов участвуют как тромбоциты с измененными свойствами, так и плазменные факторы, в том числе ацетилхолинефферезис. Одновременное снижение способности СОД к ингибированию свободно-радикальных реакций у больных ИБС позволяет предположить, что дисбаланс в проникновении арматундной системы может быть одной из причин структурно-функциональных изменений в тромбоцитах. При обострениях ИБС в значительной степени повышается агрегационная способность тромбоцитов, снижается степень их дезагрегации, повышается вязкость крови, усиливается потенциал пероксидации при снижении активности СОД и нарастании синдрома капилляр-трофической недостаточности. Соответствующие нарушения гемореологии, микроциркуляции и липопероксидации характерны для прогрессирующего течения ИБС, что подтверждается результатами математического моделирования и свидетельствуют о диагностической и прогностической значимости комплексной оценки соответствующих сдвигов.

ЛИТЕРАТУРА

ментами в белой пульпе селезенки, во многом определяющие эффективность иммунного ответа в организме в раннем детстве.

Целью настоящего исследования является изучение особенностей развития T- и B-клеточ-ных компартментов белой пульпы селезенки в раннем постнатальном онтогенезе с помощью иммуно-гистохимических методов исследования.

Исследование выполнено на белых крысах породы Spargue-Dawley грудного возраста (10 дней от роду) и взрослого возраста на самостоятельно- ное питание (20 дней от роду) – по 10 особей в каждой возрастной группе.

Серийные продольные парафиновые срезы фиксированной формалином селезенки охра- вались гематоксилин-эозином и иммунофеноти- мически моноклональными антителами против CD3 (клон 1F4), CD4 (клон W3/25), CD8α (клон MRC OX8); CD20 (клон RLN-9D3) CD45RC (клон MRC OX22) фирмы “Sero tec” (UK), CD90 (клон HIS51) фирмы “BD Pharmingen” (USA), выявляю- щими различные фракции лимфоидных клеток; а также CD68 (клон ED1), OX22 (клон MRC OX62) и белка S100 (DAKO, Denmark) для выявления стromальных клеток с помощью стрептавид- биотин-пероксидазного метода. Полученные результаты анализировались на качественном и полуколичественном уровнях с помощью рако- го- вого метода.

Проведенное исследование показало, что в раннем постнатальном онтогенезе иммунор- хитектика селезенка очень динамично подвер- гается возрастной перестройке, что свидетельст- вует о выраженных иммуномодуляционных сдвигах в организме на уровне периферического зве- на органов иммуногенеза в данный возрастной период. Так селезенка животных возраста, соот- ветствующего грудному периоду, выглядит мор- фологически незрелой: с очагами миелопоза в красной пульпе, с относительно небольшим объемом белой пульпы, представленной, главным образом, периматриальными лимфоидными влагалищами (ПАЛВ), преимущественно мелко- ми и средними, и формирующимися лимфоид- ными узелками, окруженными ободками мар- гинальной зоны с недостаточно четкими граница- ми. Иммунофенотипическое окрашивание на белок S100, выявляющее фолликулярные дendirитные клетки (ФДК) [3], показало наличие большого коли- чества формирующихся лимфоидных фолли- кулов, содержащих рыхлую мезенхимистую им- мунореактивную сеть. При окрашивании серий- ных срезов селезенки на CD20, выявляющем зрелье В-лимфоциты, видно гомогенное заполнение этой сети иммунореактивными клетками, а при окрашивании на ОХ-62, маркер дendirитных клеток, выявлялась стroma ПАЛВ, заполняемая T-лимфоцитами с фенотипом CD3+ (маркер зрелых T-клеток), CD4+ (маркер T-хеллеров и неко- торой части макрофагов и дendirитных клеток), CD8+ (маркер T-супрессоров/цитотоксических лимфоцитов, NK-клеток и части дendirитных клеток), CD90+ (маркер недавних тимусных имми- грантов). При этом обращало на себя внимание, что в то время как ОХ-62 иммунореактивные клетки располагались преимущественно в наруж- ной зоне ПАЛВ, так же как и CD90-позитивные не- давние тимусные иммигранты, CD68-клетки лока- лизовались в большей степени во внутренней зоне ПАЛВ, что согласуется с данными других исследователей о том, что большая часть дendirитных клеток в селезенке крыс являются клетками нелимфоидного происхождения [5]. Окра- шивание на CD45RC, выявляющее В-лимфо- циты, T-супрессоры и часть T-хеллеров, показало наличие нешироких марганечных зон вокруг ПАЛВ и формирующихся лимфоидных узелков; последние охрашивались наиболее интенсивно.

В ПАЛВ иммунореактивные клетки были единич- ными. Содержание CD68-иммунореактивных кле- ток в белой пульпе было невелико, в то время как красная пульпа содержала их в большом количе- стве. В целом доля CD8+ иммунореактивных кле- ток в селезенке у данной возрастной группы была выше, чем доля CD20+клеток, аналогично число ОХ-62-иммунореактивных клеток выше, чем белок S100+клеток, что соответствует уров- ню развития T- и B-клеточных субкомpartmentов в данный возрастной период. Вместе с тем окрашивание на CD20 и S100 позволило выявить более раннее становление В-клеточного субком- партмента у крыс в раннем постнатальном онтогенезе, чем это было известно ранее из исследо- ваний, выполненных без применения иммуноги- стохимических методов окраски [6].

У животных в возрастной группе, соответств- вующей периоду перехода на самостоятельное питание, объем белой пульпы значительно воз- растал; увеличивался диаметр ПАЛВ за счет по- явления крупных лимфоидных влагалищ, в раз- растающихся лимфоидных фолликулах появля- лись центры размножения. Окрашивание на белок S100 выявляло резкое увеличение объема лимфо- идных узелков, стromальный каркас которых эти клетки образуют (рис. 1). Соответственно большая плотность расположения CD20+клеток и CD45RC+клеток отмечалась в этих лимфоидных фолликулах. CD45RC-клетки образовывали более широкие ободки маргинальных зон вокруг ПАЛВ и лимфоидных узелков по сравнению с младшей возрастной группой (рис. 2). При окрашивании на ОХ-62 даже на качественном уровне было заметно увеличение доли иммунореактивных клеток в ПАЛВ (рис. 3), где они тянулись прерывистыми рядами вдоль артерий белой пульпы. Здесь же несколько возрастало число CD3+клеток, пред- ставляющих собой популяцию зрелых T-лимфо- цитов, CD90-иммунореактивных клеток и сущест- венно больше – T-супрессоров, выявляемых окра- раской на CD8 (рис. 4).
Таким образом, проведенное иммунологического изучение распределения различных популяций лимфоидных и стромальных клеток белой и красной пульпы селезенки уже на качественном уровне выявило очень динамичное развитие Т- и В-клеточных компартментов в изучаемые возрастные периоды раннего постнатального онтогенеза и отчетливую возрастную динамику их клеточных популяций: различных субпопуляций Т-лимфоцитов (зрелых Т-клеток, недавних тимусных иммигрантов, супрессоров) с параллельным нарастанием количества дендритных клеток в ПАЛВ, CD20+ иммунореактивных В-клеток и белок S100-позитивных фолликулярных дендритных клеток. Неожиданным было обнаружение значительного количества лимфоидных фолликулов с центрами размножения в более раннем возрасте, чем это принято было считать [6], уже в 20-дневном возрасте, как показало окрашивание на CD45RC, CD20 и белок S100, а также значительного количества зрелых макрофагов в красной пульпе в возрасте, соответствующем периоду грудного вскармливания.

ЗАКЛЮЧЕНИЕ
Обнаруженная динамика популяций лимфоидных и стромальных клеток Т- и В-клеточных компартментов белой пульпы селезенки в раннем постнатальном онтогенезе позволяет предположить высокую степень "готовности" к перестройкам иммунорганизации в организме при различных иммунодепрессивных воздействиях в описываемый возрастной период.

ЛИТЕРАТУРА