Оценочные средства для проведения аттестации по дисциплине «Основы дизайна и химии лекарств» для обучающихся 2021 года поступления по образовательной программе 33.05.01 Фармация, направленность (профиль) Медицинская биохимия (специалитет), форма обучения очная на 2025-2026 учебный год

1. Оценочные средства для проведения текущей аттестации по дисциплине

Текущая аттестация включает следующие типы заданий: тестирование, решение ситуационных задач, собеседование по контрольным вопросам.

1.1. Примеры тестовых заданий

Проверяемые индикаторы достижения компетенции: УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1; ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1; ПК-8.2.1; ПК-8.2.1; ПК-8.3.1; ПК-11.1.1; ПК-11.2.1; ПК-11.3.1

ВЫБЕРИТЕ ДВА ПРАВИЛЬНЫХ ОТВЕТА 001.АРОМАТИЧЕСКИМИ ЯВЛЯЮТСЯ СОЕЛИНЕНИЯ

ВЫБЕРИТЕ ОДИН ПРАВИЛЬНЫЙ ОТВЕТ

002. ВЗАИМОДЕЙСТВИЕ БЕНЗОЛА С ГАЛОГЕНАМИ В ПРИСУТСТВИИ КАТАЛИЗАТОРОВ – КИСЛОТ ЛЬЮИСА ОТНОСИТСЯ К РЕАКЦИЯМ ТИПА

- 1) радикальное присоединение
- 2) электрофильное присоединение
- 3) нуклеофильное замещение
- 4) радикальное замещение

электрофильное замещение

- 003. Нитрование бензола относится к реакциям типа
- 1) радикальное присоединение
- 2) электрофильное присоединение
- 3) нуклеофильное замещение
- 4) радикальное замещение

электрофильное замещение

004.ВЫБЕРИТЕ ПУНКТ, СОДЕРЖАЩИЙ ОШИБОЧНОЕ УТВЕРЖДЕНИЕ

- 1) Пиразолон это пятичленный цикл с двумя гетероатомами
- 2) Продуктом реакций электрофильного замещения для пиразолона являются N-производные пиразолона
- 3) Пиразолон сульфируется олеумом
- 4) Пиразолон не вступает в реакции электрофильного замещения
- 5) У пиразолона наиболее высокий отрицательный заряд возникает на атоме С-4

ВЫБЕРИТЕ ОДИН ПРАВИЛЬНЫЙ ОТВЕТ

005. КАКУЮ АМИНОКИСЛОТУ, ВХОДЯЩУЮ В СОСТАВ БЕЛКОВ, МОЖНО ОПРЕДЕЛИТЬ С ПОМОЩЬЮ КСАНТОПРОТЕИНОВОЙ РЕАКЦИИ

1) глицин;

- 2) серин;
- 3) аспарагин;
- 4) пролин;
- 5) фенилаланин.

ВЫБЕРИТЕ ДВА ПРАВИЛЬНЫХ ОТВЕТА

009.ДЛЯ ЦИТОЗИНА ХАРАКТЕРНА ПРОТОТРОПНАЯ ТАУТОМЕРИЯ;

- 1) амино-иминная таутомерия;
- 2) лактам-лактимная таутомерия;
- 3) кето-енольная таутомерия;
- 4) цикло-оксотаутомерия.

ВЫБЕРИТЕ ОДИН ПРАВИЛЬНЫЙ ОТВЕТ

006. ВЫБЕРИТЕ НАЗВАНИЕ АЛКАЛОИДА ТЕОБРОМИНА

- 1) 1,3,7-триметилксантин;
- 2) 3,7-диметилксантин;
- 3) 1.3-диметилксантин;
- 4) 3,8-диметилксантин;
 - 1.8-диметилксантин.

007. КАКОЕ ВЫСКАЗЫВАНИЕ О СТРОЕНИИ КОФЕРМЕНТА НАД⁺ НЕВЕРНО?

- 1) содержит никотинамидный фрагмент;
- 2) является N-гликозидом;
- 3) содержит О-гликозидную связь;
- 4) содержит ангидридную связь;
 - 5) содержит сложноэфирную связь

008.КРИВОЙ ТИТРОВАНИЯ НАЗЫВАЕТСЯ

- 1) графическое изображение зависимости концентрации определяемого компонента или пропорционального ей свойства системы от значения рН титруемого раствора.
- 2) графическое изображение зависимости концентрации определяемого компонента или пропорционального ей свойства системы от объема прибавленного титранта.
- 3) графическое изображение зависимости концентрации определяемого компонента или пропорционального ей свойства системы от времени.
- 4) графическое изображение зависимости концентрации определяемого компонента или пропорционального ей свойства системы от концентрации прибавленного титранта

009. ОПРЕДЕЛЕНИЕ ЩЕЛОЧИ И КАРБОНАТОВ ПРИ СОВМЕСТНОМ ПРИСУТСТВИИ ПРОВОДИТСЯ МЕТОДОМ

- 1)кислотно -основного титрования,
- 2) окислительно восстановительного титрования;
- 3) осадительного титрования,
- 4) комплексонометрического титрования Д) методом пипетирования

010. КОМПЛЕКСОМ III- ЭТО:

- 1)нитрилуксусная кислота,
- 2) этиленднамнитетрауксусная кислота,
- 3) динатриевая соль этилендиаминтетрауксусной кислоты;
- 4) диаминциклогексантетрауксусная кислота.
- 5)Трилон А

1.2. Примеры ситуационных задач

Проверяемые индикаторы достижения компетенции: УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1; ПК-8.1.1; ПК-8.2.1; ПК-8.3.1; ПК-8.3.1; ПК-11.1.1; ПК-11.2.1; ПК-11.3.1 1.Навеску гематита $0.5~\mathrm{r}$, содержащую 69.9% железа растворили в кислоте. Полученный раствор разбавили в мерной колбе до $250\mathrm{m}$ л. Какой объем $\mathrm{KMnO_4}$ с $\mathrm{N}(\mathrm{KMnO_4}) = 0.1215\mathrm{моль/л}$ требуется для титрования ионов железа восстановленных до $\mathrm{Fe^{+2}}$ в $100\mathrm{m}$ л этого раствора.

- 1. К навеске 1,5г технического Na_2SO_3 после растворения прибавили 100мл 0,1н раствора йода. На титрование избытка йода израсходовали 40 мл раствора, в 200мл которого содержится 2, 482 $Na_2S_2O_3$. Определить процентное содержание Na_2SO_3
- 1.3. Пример варианта контрольной работы

Проверяемые индикаторы достижения компетенции: УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1; ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1; ПК-8.2.1; ПК-8.3.1; ПК-8.3.1; ПК-11.1.1; ПК-11.2.1; ПК-11.3.1

- 1. Аналитические методы для подтверждения структуры синтезированных препаратов: титриметрический анализ. Основные понятия, классификация титриметрических метов, применение титриметрических методов.
- 2. Аналитические методы для подтверждения структуры синтезированных препаратов: электрохимические методы анализа. Потенциометрическое титрование.
- 3. К навеске 1,5г технического Na_2SO_3 после растворения прибавили 100мл 0,1н раствора йода. На титрование избытка йода израсходовали 40 мл раствора, в 200мл которого содержится 2, 482 $Na_2S_2O_3$. Определить процентное содержание Na_2SO_3
- 1.4. Пример контрольных вопросов

Проверяемые индикаторы достижения компетенции: УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1; ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1; ПК-8.1.1; ПК-8.2.1; ПК-8.3.1; ПК-11.1.1; ПК-11.2.1; ПК-11.3.1

- 1. Дизайн структуры синтетических лекарственных веществ на основе принципа химической модификации для моделирования их биологической активности. Производные гетероциклических соединений
- 2. Эмпирические основы дизайна пролекарств для моделирования их биологической активности. Аминокислоты, пептиды, белки.
- **3.** Аналитические методы для подтверждения структуры синтезированных препаратов: Сущность оптических методов анализа, их классификация, достоинства и недостатки.
- 1.5. Оценочные средства для самостоятельной работы обучающихся

Оценка самостоятельной работы включает в себя тестирование.

1.5.1. Примеры тестовых заданий с одиночным ответом

Проверяемые индикаторы достижения компетенции: УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1; ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1; ПК-8.1.1; ПК-8.2.1; ПК-8.3.1; ПК-11.1.1; ПК-11.2.1; ПК-11.3.1

- 1. Выберите один ответ из пяти. Для обнаружения нона К⁺ не используют
- 1) винную кислоту;
- 2) перхлорат аммония;
- 3) гексанитрокобальтат (III) натрия
- 4) диоксоуранилаиетат
- 5) окрашивание пламени
- 2. Выберите один ответ из пяти. Аналитическая химическая реакция это реакция, сопровождающаяся
- а) изменением окраски раствора
- б) определенным аналитическим эффектом за счет образования продукта реакции, обладающего специфическими свойствами
- в) изменением рН раствора
- г) растворением осадка
- д) образованием осадка
- 3. . Выберите один ответ из пяти. Микрокристаллоскопическая реакция сопровождается образованием
- а) кристаллов характерной формы
- б) окрашенных перлов
- в) мелкокристаллического осадка
- г) окрашенных кристаллов
- д) аморфного осадка

- 4. . Выберите один ответ из четырех. Реактив на катион калин
- а) оксалат аммония
- б) щавелевая кислота
- в) гидрофосфат натрия
- г) гексститрокобальтат (III) натрия
- 5. Выберите один ответ из четырех. Катион натрии окрашивает илами в
- а) желтый цвет
- б) фиолетовый цвет
- в) кирпично-красный цвет
- г) зеленый цвет
- 6. Выберите один ответ из четырех. Солевой эффект это
- 1) влияние на растворимость труднорастворимого электролита соли, содержащей одноименный ион, и понижающей растворимость малорастворимого электролита
- влияние на растворимость труднорастворимого электролита соли, не имеющей одноименный ион, и понижающей растворимость малорастворимого электролита
- 3) влияние на растворимость труднорастворимого электролита соли, содержащей одноименный ион, и повышающей растворимость малорастворимого электролита
- 4) влияние на растворимость труднорастворимого электролита соли, не имеющей одноименный ион, и повышающей растворимость малорастворимого электролита
- 5) влияние на растворимость труднорастворимого электролита любого иона в сторону уменьшения растворимости
- 7. Выберите один ответ из четырехп. К физическим методам количественного определении относится:
- а) перманганатометрия
- б) иодометрия
- в) рефрактометрия
- г) броматометрия
- 8.Выберите один ответ из четырех. Метод нерманганатометрни проводит при

pH:

- a) pH = 7
- б) pH > 7
- pH < 7
- 9. Выберите один ответ из четырех. Окислительно-восстановительным методом ивлнетси:
- а) метод Мора
- б) меркуриметрия
- в) йодометрия
- г) трилонометрия
- 10. Выберите один ответ из четырех. К методам осаждения относится:
- а) трилонометрия
- б) алкалиметрия
- в) аргентометрия
- г) нитрометрия
- 1.5.2. Примеры тестовых заданий с множественным выбором и/или на сопоставление и/или на установление последовательности

Проверяемые индикаторы достижения компетенции: УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1; ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1; ПК-8.1.1; ПК-8.2.1; ПК-8.3.1; ПК-11.1.1; ПК-11.2.1; ПК-11.3.1

- 1. Выберите три ответа из шести. К методам окислительно-восстановительного титрования относятся:
- а) дихроматометрия
- б) перманганатометрия

- в) цериметрия
- г) аргентометрия
- д) ацидиметрия
- е) алкалиметрия
 - 2. Выберите три ответа из шести. К методам осадительного титрования относятся:
- а) Метод Мора
- б) Метод Фаянса
- в) Метод Фольгарда
- г) Редуктометрия
- д) Комплексонометрия
- е) Метод отрыва кольца
 - 3. Выберите три ответа из шести. Электрохимическим методам анализа относятся:
- а) Потенциометрия
- б) Полярография
- в) Кондуктометрия
- г) Фотоколориметрия
- д) Спектрофотометрия
- е) Хроматография

4. Установите аналитического эффекта и катиона, подобрав к каждой позиции, данной в первом столбце, соответствующую позицию из второго столбца:

Аналитический эффеки	Катион
1. Окрашивает пламя в фиолетовый цвет	A. Na ⁺
2. Окрашивает пламя в желтый цвет	Б. Ca ²⁺
3. Окрашивает пламя в красный цвет	B. Ba ²⁺
4. Окрашивает пламя в зеленый цвет	Γ . K^+

5. Установите соответствие измеряемого параметра и метода, данной в первом столбце, соответствующую позицию из второго столбца:

Измеряемый параметр	Метод
1. электродный потенциал	А. Спектрофотометрия
2. оптическая плотность	Б. Потенциометрия
3. электрическая проводимость	В. Кондуктометрия
4. коэффициент светопропускания	
5. pH	
6. сопротивление раствора	

6. Установите соответствие индикатора и метода количественного анализа, данной в первом столбце, соответствующую позицию из второго столбца:

Индикатор	Метод количественного анализа
1. Метиловый оранжевый	А. Метод Мора
2. Хромат калия	Б. Ацидиметрия
3. Крахмал	В. Комплексонометрия
4. Мурексид	Г. Иодометрия
5. Эозин	Д.Нитритометрия
6. Тропеолин 00	Е. Метод Фаянса

- 7. Установите последовательность операций в методе Гравиметрия. Запишите соответствующую последовательность цифр:
- 1. фильтрование
- 2. взвешивание навески
- 3. расчет навески и объема осадителя
- 4. расчет результатов и ошибки анализа
- 5. получение осаждаемой формы
- 6. растворение навески
- 7. Получение и взвешивание гравиметрисеской формы.
- 8. Установите последовательность стадий титриметрического анализа. Запишите соответствующую последовательность цифр.
- 1. отбор аликвоты
- 2. титрование
- 3. приготовление анализируемого раствора
- 4. визуальное определение КТТ
- 5. Добавление индикатора

- 9. Установите последовательность стадий Спектрофотометрического определения. Запишите соответствующую последовательность цифр.
- 1. измерение оптической плотности стандартных растворов
- 2. построение градуировочного графика
- 3. измерение оптической плотности анализируемого раствора
- 4. приготовлении серии стандартных растворов
- 5. расчеты результатов анализа
- 10. Установите последовательность стадий Хроматографирования. Запишите соответствующую последовательность цифр.
- 1. Подготовить хроматографическую пластинку
- 2. Поместить растворитель в хроматографическую колонку
- 3. поместить хроматографическую пластинку в колонку
- 4. нанести пробы анализируемых веществ на хроматографическую пластинку
- 5. Высушить хроматографическую пластинку после хроматографирования
- 1.5.3. Примеры заданий открытого типа (вопрос с открытым ответом)

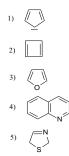
Проверяемые индикаторы достижения компетенции: ОПК-1.1.1.

- 1. Рассчитайте, какой объем хлороводородной кислоты с плотностью 1,170 г/мл потребуется для приготовления 200 мл раствора с концентрацией HCl 0,05 моль/л.
- 2. Для стандартизации раствора КОН было взято 0.02г $H_2C_2O_4$ $2H_2O$. На титрование пошло 15 мл раствора КОН. Чему равна концентрация титранта?
- 3. Вычислить молярную концентрацию и титр раствора HCl, если на титрование 0,4217 г буры израсходовано 17,5 мл этой кислоты.
- 4. Для определения молярной концентрации эквивалента H_2SO_4 к 10,0 мл ее добавили избыток $BaCl_2$. Масса полученного осадка $BaSO_4$ после фильтрования, прокаливания и взвешивания составила 0,2762г. Вычислить молярную концентрацию эквивалента раствора H_2SO_4 и титр.
- 5. Навеску $H_2C_2O_4$ $2H_2O$ массой $0{,}6000$ г растворили в мерной колбе вместимостью $100{,}0$ мл. На титрование $20{,}00$ мл полученного раствора израсходовали $18{,}34$ мл NaOH. Определить молярную концентрацию раствора NaOH и его титр по $H_2C_2O_4$
- 2. Оценочные средства для проведения промежуточной аттестации по дисциплине Промежуточная аттестация проводится в форме зачета. Перечень вопросов для подготовки к промежуточной аттестации:

.2

No॒	Вопросы для промежуточной аттестации	Проверяемые индикаторы
		достижения компетенций
1.	Дизайн структуры синтетических лекарственных	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-
	веществ на основе принципа химической	1.1.1; ОПК-1.2.1;ОПК-1.3.1; ПК-5.1.1;
	модификации для моделирования их	ПК-5.2.1; ПК-5.3.1; ПК-8.1.1; ПК-
	биологической активности. Производные	8.2.1; ПК-8.3.1; ПК-11.1.1; ПК-11.2.1;
	ароматических соединений.	ПК-11.3.1
2.	Zi Zismin erpyntypsi emittetti teettiin sientapersemism	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-
	веществ на основе принципа химической	1.1.1; ОПК-1.2.1;ОПК-1.3.1; ПК-5.1.1;
	модификации для моделирования их	ПК-5.2.1; ПК-5.3.1; ПК-8.1.1; ПК-
	биологической активности. Производные гетероциклических соединений	8.2.1; ПК-8.3.1; ПК-11.1.1; ПК-11.2.1;
тетероциклических соедин	тегероциклических соединении	ПК-11.3.1
3.	Дизайн структуры лекарственных веществ на	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-
моделирования их	основе принципа химической модификации для	1.1.1; ОПК-1.2.1;ОПК-1.3.1; ПК-5.1.1;
	моделирования их биологической активности:	ПК-5.2.1; ПК-5.3.1; ПК-8.1.1; ПК-
	антибактеиальные препараты	8.2.1; ПК-8.3.1; ПК-11.1.1; ПК-11.2.1;
		ПК-11.3.1
4.	Дизайн структуры лекарственных веществ на основе принципа химической модификации для моделирования их биологической активности: комплексные соединения	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-
		1.1.1; ОПК-1.2.1;ОПК-1.3.1; ПК-5.1.1;
		ПК-5.2.1; ПК-5.3.1; ПК-8.1.1; ПК-
		8.2.1; ПК-8.3.1; ПК-11.1.1; ПК-11.2.1;

		ПК-11.3.1
5.	Дизайн структуры синтетических лекарственных	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-
3.	веществ на основе принципа химической	1.1.1; ОПК-1.2.1; ОПК-1.3.1; ПК-5.1.1;
	модификации для моделирования их	
	биологической активности: противовирусные	ПК-5.2.1; ПК-5.3.1; ПК-8.1.1; ПК-
	препараты	8.2.1; ПК-8.3.1; ПК-11.1.1; ПК-11.2.1;
	1 1	ПК-11.3.1
6.	Дизайн структуры лекарственных веществ на	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-
	основе принципа химической модификации для	1.1.1; ОПК-1.2.1;ОПК-1.3.1; ПК-5.1.1;
	моделирования их биологической активности:	ПК-5.2.1; ПК-5.3.1; ПК-8.1.1; ПК-
	противоопухолевые препараты	8.2.1; ПК-8.3.1; ПК-11.1.1; ПК-11.2.1;
		ПК-11.3.1
7.	Дизайн структуры лекарственных веществ на основе принципа химической модификации для моделирования их биологической активности:	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-
, .		1.1.1; ОПК-1.2.1;ОПК-1.3.1; ПК-5.1.1;
		ПК-5.2.1; ПК-5.3.1; ПК-8.1.1; ПК-
	моделирование взаимодействия лекарственного	8.2.1; ПК-8.3.1; ПК-11.1.1; ПК-11.2.1;
	вещества с биорецепторами	
		ПК-11.3.1
8.	Дизайн лекарственных веществ природного	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-
	происхождения для моделирования их	1.1.1; ОПК-1.2.1;ОПК-1.3.1; ПК-5.1.1;
	биологической активности. Алкалоиды.	ПК-5.2.1; ПК-5.3.1; ПК-8.1.1; ПК-
		8.2.1; ПК-8.3.1; ПК-11.1.1; ПК-11.2.1;
		ПК-11.3.1
9.	Дизайн лекарственных веществ природного	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-
	происхождения для моделирования их	1.1.1; ОПК-1.2.1;ОПК-1.3.1; ПК-5.1.1;
	биологической активности. Гликозиды. Занятие	ПК-5.2.1; ПК-5.3.1; ПК-8.1.1; ПК-
	конференция.	8.2.1; ПК-8.3.1; ПК-11.1.1; ПК-11.2.1;
		ПК-11.3.1
10.	Эмпирические основы дизайна пролекарств для	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-
10.	моделирования их биологической активности.	
	Аминокислоты, пептиды, белки.	1.1.1; ОПК-1.2.1;ОПК-1.3.1; ПК-5.1.1;
	тыннокнелоты, пентиды, ослки.	ПК-5.2.1; ПК-5.3.1; ПК-8.1.1; ПК-
		8.2.1; ПК-8.3.1; ПК-11.1.1; ПК-11.2.1;
		ПК-11.3.1
11.	Эмпирические основы дизайна пролекарств для	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-
	моделирования их биологической активности.	1.1.1; ОПК-1.2.1;ОПК-1.3.1; ПК-5.1.1;
	Нуклеиновые кислоты	ПК-5.2.1; ПК-5.3.1; ПК-8.1.1; ПК-
		8.2.1; ПК-8.3.1; ПК-11.1.1; ПК-11.2.1;
		ПК-11.3.1
12.	Значение функциональных групп в дизайне	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-
	структуры новых потенциальных лекарственных	1.1.1; ОПК-1.2.1;ОПК-1.3.1; ПК-5.1.1;
	средств. Гетерофункциональные соединения.	ПК-5.2.1; ПК-5.3.1; ПК-8.1.1; ПК-
		8.2.1; ПК-8.3.1; ПК-11.1.1; ПК-11.2.1;
12		ПК-11.3.1
13.	Аналитические методы для подтверждения	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-
	структуры синтезированных препаратов:	1.1.1; ОПК-1.2.1;ОПК-1.3.1; ПК-5.1.1;
	титриметрический анализ. Основные понятия,	ПК-5.2.1; ПК-5.3.1; ПК-8.1.1; ПК-
	классификация титриметрических метов,	8.2.1; ПК-8.3.1; ПК-11.1.1; ПК-11.2.1;
	применение титриметрических методов.	ПК-11.3.1
14	Аналитические методы для подтверждения	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-
	структуры синтезированных препаратов:	1.1.1; ОПК-1.2.1;ОПК-1.3.1; ПК-5.1.1;
	титриметрический анализ. Основные понятия,	ПК-5.2.1; ПК-5.3.1; ПК-8.1.1; ПК-
	классификация титриметрических метов,	8.2.1; ПК-8.3.1; ПК-11.1.1; ПК-11.2.1;
	применение титриметрических методов: кислотно-	ПК-11.3.1
		111.3.1
1.5	основное тирование	VICTOR VICTOR
15	Аналитические методы для подтверждения	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-
	структуры синтезированных препаратов:	1.1.1; ОПК-1.2.1;ОПК-1.3.1; ПК-5.1.1;


		ПИ 5 2 1 ПИ 5 2 1 ПИ 0 1 1 ПИ
	титриметрический анализ. Основные понятия,	ПК-5.2.1; ПК-5.3.1; ПК-8.1.1; ПК-
	классификация титриметрических метов,	8.2.1; ПК-8.3.1; ПК-11.1.1; ПК-11.2.1;
	применение титриметрических методов:	ПК-11.3.1
	окислительно-восстаеновительное титрование.	
16	Аналитические методы для подтверждения	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-
	структуры синтезированных препаратов:	1.1.1; ОПК-1.2.1;ОПК-1.3.1; ПК-5.1.1;
	титриметрический анализ. Основные понятия,	ПК-5.2.1; ПК-5.3.1; ПК-8.1.1; ПК-
	классификация титриметрических метов,	8.2.1; ПК-8.3.1; ПК-11.1.1; ПК-11.2.1;
	применение титриметрических методов:	ПК-11.3.1
	комплексонометрическое титрование.	
17	Аналитические методы для подтверждения	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-
	структуры синтезированных препаратов:	1.1.1; ОПК-1.2.1;ОПК-1.3.1; ПК-5.1.1;
	титриметрический анализ. Основные понятия,	ПК-5.2.1; ПК-5.3.1; ПК-8.1.1; ПК-
	классификация титриметрических метов,	8.2.1; ПК-8.3.1; ПК-11.1.1; ПК-11.2.1;
	применение титриметрических методов:	ПК-11.3.1
	осадительное титрование	
18.	Аналитические методы для подтверждения	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-
	структуры синтезированных препаратов:	1.1.1; ОПК-1.2.1;ОПК-1.3.1; ПК-5.1.1;
	электрохимические методы анализа.	ПК-5.2.1; ПК-5.3.1; ПК-8.1.1; ПК-
	Потенциометрическое титрование.	8.2.1; ПК-8.3.1; ПК-11.1.1; ПК-11.2.1;
		ПК-11.3.1
19.	Аналитические методы для подтверждения	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-
	структуры синтезированных препаратов: Сущность	1.1.1; ОПК-1.2.1;ОПК-1.3.1; ПК-5.1.1;
	оптических методов анализа, их классификация,	ПК-5.2.1; ПК-5.3.1; ПК-8.1.1; ПК-
	достоинства и недостатки.	8.2.1; ПК-8.3.1; ПК-11.1.1; ПК-11.2.1;
		ПК-11.3.1
20.	Аналитические методы для подтверждения	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-
	структуры синтезированных препаратов:	1.1.1; ОПК-1.2.1;ОПК-1.3.1; ПК-5.1.1;
	оптические методы анализа. Фотоколориметрия	ПК-5.2.1; ПК-5.3.1; ПК-8.1.1; ПК-
		8.2.1; ПК-8.3.1; ПК-11.1.1; ПК-11.2.1;
		ПК-11.3.1
21.	Аналитические методы для подтверждения	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-
	структуры синтезированных препаратов:	1.1.1; ОПК-1.2.1;ОПК-1.3.1; ПК-5.1.1;
	оптические методы анализа. Спектрофотометрия.	ПК-5.2.1; ПК-5.3.1; ПК-8.1.1; ПК-
	1 1	8.2.1; ПК-8.3.1; ПК-11.1.1; ПК-11.2.1;
		ПК-11.3.1
22.	Аналитические методы для подтверждения	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-
	структуры синтезированных препаратов: Общая	1.1.1; ОПК-1.2.1;ОПК-1.3.1; ПК-5.1.1;
	характеристика инструментальных методов	ПК-5.2.1; ПК-5.3.1; ПК-8.1.1; ПК-
	анализа.	8.2.1; ПК-8.3.1; ПК-11.1.1; ПК-11.2.1;
		ПК-11.3.1
		111 11.5.1

Промежуточная аттестация включает следующие типы заданий: тестирование, собеседование по вопросам, решение ситуационных задач.

Проверяемые индикаторы достижения компетенции: УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1; ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1; ПК-8.1.1; ПК-8.2.1; ПК-8.3.1; ПК-11.1.1; ПК-11.2.1; ПК-11.3.1

ВЫБЕРИТЕ ДВА ПРАВИЛЬНЫХ ОТВЕТА 001.АРОМАТИЧЕСКИМИ ЯВЛЯЮТСЯ СОЕДИНЕНИЯ

^{2.1.} Примеры тестовых заданий

ВЫБЕРИТЕ ОДИН ПРАВИЛЬНЫЙ ОТВЕТ

002. ВЗАИМОДЕЙСТВИЕ БЕНЗОЛА С ГАЛОГЕНАМИ В ПРИСУТСТВИИ КАТАЛИЗАТОРОВ – КИСЛОТ ЛЬЮИСА ОТНОСИТСЯ К РЕАКЦИЯМ ТИПА

- 5) радикальное присоединение
- 6) электрофильное присоединение
- 7) нуклеофильное замещение
- 8) радикальное замещение электрофильное замещение

003. Нитрование бензола относится к реакциям типа

- 5) радикальное присоединение
- 6) электрофильное присоединение
- 7) нуклеофильное замещение
- 8) радикальное замещение

электрофильное замещение

004.ВЫБЕРИТЕ ПУНКТ, СОДЕРЖАЩИЙ ОШИБОЧНОЕ УТВЕРЖДЕНИЕ

- 6) Пиразолон это пятичленный цикл с двумя гетероатомами
- 7) Продуктом реакций электрофильного замещения для пиразолона являются N-производные пиразолона
- 8) Пиразолон сульфируется олеумом
- 9) Пиразолон не вступает в реакции электрофильного замещения
- 10)У пиразолона наиболее высокий отрицательный заряд возникает на атоме С-4

ВЫБЕРИТЕ ОДИН ПРАВИЛЬНЫЙ ОТВЕТ

005. КАКУЮ АМИНОКИСЛОТУ, ВХОДЯЩУЮ В СОСТАВ БЕЛКОВ, МОЖНО ОПРЕДЕЛИТЬ С ПОМОЩЬЮ КСАНТОПРОТЕИНОВОЙ РЕАКЦИИ

- 5) глицин;
- 6) серин;
- 7) аспарагин;
- пролин;
- 5) фенилаланин.

ВЫБЕРИТЕ ДВА ПРАВИЛЬНЫХ ОТВЕТА

009.ДЛЯ ЦИТОЗИНА ХАРАКТЕРНА ПРОТОТРОПНАЯ ТАУТОМЕРИЯ;

- 5) амино-иминная таутомерия;
- 6) лактам-лактимная таутомерия;
- 7) кето-енольная таутомерия;
- 8) цикло-оксотаутомерия.

ВЫБЕРИТЕ ОДИН ПРАВИЛЬНЫЙ ОТВЕТ

006. ВЫБЕРИТЕ НАЗВАНИЕ АЛКАЛОИДА ТЕОБРОМИНА

- 5) 1,3,7-триметилксантин;
- 6) 3,7-диметилксантин;
- 7) 1.3-диметилксантин;
- 8) 3,8-диметилксантин;
 - 1.8-диметилксантин.

007. КАКОЕ ВЫСКАЗЫВАНИЕ О СТРОЕНИИ КОФЕРМЕНТА НАД* НЕВЕРНО?

- 6) содержит никотинамидный фрагмент;
- 7) является N-гликозидом;

- 8) содержит О-гликозидную связь;
- 9) содержит ангидридную связь;
 - 10) содержит сложноэфирную связь

008.КРИВОЙ ТИТРОВАНИЯ НАЗЫВАЕТСЯ

- 1) графическое изображение зависимости концентрации определяемого компонента или пропорционального ей свойства системы от значения рН титруемого раствора.
- 2) графическое изображение зависимости концентрации определяемого компонента или пропорционального ей свойства системы от объема прибавленного титранта.
- 3) графическое изображение зависимости концентрации определяемого компонента или пропорционального ей свойства системы от времени.
- 4) графическое изображение зависимости концентрации определяемого компонента или пропорционального ей свойства системы от концентрации прибавленного титранта

009. ОПРЕДЕЛЕНИЕ ЩЕЛОЧИ И КАРБОНАТОВ ПРИ СОВМЕСТНОМ ПРИСУТСТВИИ ПРОВОДИТСЯ МЕТОДОМ

- 1)кислотно -основного титрования,
- 2) окислительно восстановительного титрования;
- 3) осадительного титрования,
- 4) комплексонометрического титрования Д) методом пипетирования

010. КОМПЛЕКСОМ III- ЭТО:

- 1)нитрилуксусная кислота,
- 2) этиленднамнитетрауксусная кислота,
- 3) динатриевая соль этилендиаминтетрауксусной кислоты;
- 4) диаминциклогексантетрауксусная кислота.
- 5)Трилон А
- 2.2. Примеры вопросов для собеседования:

Проверяемые индикаторы достижения компетенции: УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-

- 1.2.1;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1; ПК-8.1.1; ПК-8.2.1; ПК-8.3.1; ПК-11.1.1; ПК-11.2.1; ПК-11.3.1
- 1 Дизайн структуры синтетических лекарственных веществ на основе принципа химической модификации для моделирования их биологической активности. Производные ароматических соединений.
- 2. Аналитические методы для подтверждения структуры синтезированных препаратов: титриметрический анализ. Основные понятия, классификация титриметрических метов, применение титриметрических методов.
- 2.3. Примеры ситуационных задач (2 примера)

Проверяемые индикаторы достижения компетенции: УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1; ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1; ПК-8.2.1; ПК-8.3.1; ПК-8.3.1; ПК-11.1.1; ПК-11.2.1; ПК-11.3.1

- 1. На титрование 2,5 мл 0,1н раствора щавелевой кислоты израсходовано 27,5 мл раствора $KMnO_{4.}$ Рассчитайте титр раствора $KMnO_{4}$
- 2. К подкисленному раствору фармакопейного препарата H_2O_2 прибавили избыточное количество КЈ и несколько капель раствора (NH4) $_2$ MnO $_4$ как катализатора. Выделившийся J_2 оттитровали 22,40 мл 0,1010 и $Na_2S_2O_3$. Сколько граммов H_2O_2 содержалось в растворе
- 4.2.2. Перечень вопросов для собеседования

В полном объеме фонд оценочных средств по дисциплине доступен в ЭИОС ВолгГМУ по ссылке(ам): https://elearning.volgmed.ru/course/index.php?categoryid=169

Рассмотрено на заседании кафедры химии, протокол от «30» мая 2025 г. № 10.

Заведующий кафедрой

А.К. Брель