Тематический план занятий семинарского типа по дисциплине

«Иммунобиологические и генотерапевтические препараты» для обучающихся 2022 года поступления по образовательной программе 33.05.01 Фармация, профиль Фармация специалитет,

форма обучения очная на 2025-2026 учебный год

№	Тематические блоки	Практическая	Часы
		подготовка в	$(академ.)^3$
		рамках ТБ	
	7 семестр		
1.	История применения биологических лекарственных		
	препаратов, их место в медицине и фармацевтике.		
	Производство биологических лекарственных		
	препаратов и фармакологическая безопасность	ПП	2
	страны. Биологические лекарственные препараты:		_
	классификация, применение в медицине.		
	Представители этой группы в перечнях лекарственных		
	препаратов для медицинского применения ² .		
2.	Иммунобиологические лекарственные препараты ¹ .		
	Вакцины живые (аттенуированные),		2
	инактивированные, адъювантные. Преимущества и	ПП	_
	недостатки данной группы иммунобиологических		
	лекарственных препаратов ² .		
3.	Анатоксиновые и сплит-вакцины ¹ . Субъединичные		
	вакцины – полисахаридные, конъюгированные,		
	вакцины на основе белка, рекомбинантные или на	ПП	2
	основе исходного патогена. Преимущества и	1111	
	недостатки данных групп иммунобиологических		
	лекарственных препаратов ² .		
4.	Вакцины на основе вирусных векторов и на основе		
	матричной РНК (мРНК). Преимущества и недостатки	ПП	2
	данных групп иммунобиологических лекарственных	1111	
	препаратов ² .		
5.	Иммунобиологические лекарственные препараты ¹ .		
	Сыворотки, анатоксины и иммуноглобулины, вакцины		
	химические (антигены), анатоксины, глобулины,	ПП	2
	бактериофаги, интерфероны, пробиотики.	1111	
	Преимущества и недостатки данных групп		
	иммунобиологических лекарственных препаратов ² .		
6.	Рекомбинантные лекарственные препараты ¹ : цитокины		_
	(интерфероны, интерлейкины,	ПП	2
	колониестимулирующие факторы, факторы некроза	1111	
	опухоли) ² .		
7.	Рекомбинантные лекарственные препараты: гормоны		2
	роста и факторы роста, гибридные белки (фьюжен	ПП	_
	белки, химерные белки), ферменты, рецепторы ² .		

8.	Биологические лекарственные препараты, влияющие на систему свертывания крови 1 . Ферментные препараты $\mathrm{B01AD.}^2$	ПП	2
9.	Иммунобиологические лекарственные препараты: лекарственные препараты, полученные из крови, плазмы крови человека и животных (за исключением цельной крови) ¹ . История разработки (таймлайн) и применения. Классификация по происхождению (препараты альбумина человека; препараты иммуноглобулинов человека; препараты факторов свертывания крови, содержащие один из факторов свертывания крови или их комбинацию) с примерами ² .	ПП	2
10.	Иммунобиологические лекарственные препараты - препараты крови. Классификация по действию: препараты комплексного действия (препараты плазмы и растворы альбумина), иммунологически активные и гемостатические (криопреципитат, протромбиновый комплекс, фибриноген и отдельные факторы свертывания подгруппы B02BD) ² .	ПП	2
11.	Рекомбинантные лекарственные препараты: моноклональные антитела ¹ . История (таймлайн) разработок, классификация (на основе мышиных, химерных, гуманизированных и человеческих антител) ² .	ПП	2
12.	Рекомбинантные лекарственные препараты: моноклональные антитела в ревматологии, в трансплантологии, в онкологии и онкогематологии, в лечении COVID-19 ² .	ПП	2
13.	Генотерапевтические препараты 1 . Номенклатура (препараты для генной терапии, препараты для клеточной терапии, препараты для генной терапии на основе клеток и препараты для терапии на основе вирусов 2 .	ПП	2
14.	Генная и клеточная терапия ¹ . Технологии генной терапии. Типы клеточных модификаций ех vivo, in vivo. Перспективы в лечении врожденных иммунологических заболеваний, системы кроветворения, онкогематологических заболеваний с использованием Т- клеток с химерного рецептора антигена (CAR-T) ² .	ПП	2
15.	Векторы – как носители для доставки генов ¹ . Основные типы, принципы действия и характеристика вирусных векторов (емкость, селективность, продолжительность экспрессии гена, иммуногенность, простота производства, возможность интеграции в ДНК- клетки, вероятность наличия у пациента антител) ² .	ПП	2
16.	Способы доставки векторов на основе вирусов (генная пушка, электропорация, магнетофекция, сонопорация, с помощью применения различных наночастиц - кремния, золота, фосфата кальция, липидов) ² .	ПП	2

17.	Доклиническая разработка генотерапевтических		
	препаратов ¹ . Регламентирующие документы.		_
	Стратегия. Потенциальные риски при использовании	ПП	2
	генотерапевтических препаратов. Экспериментальные		
	модели. Токсичность 2 .		
18.	Итоговое занятие		2
	Итого	36	

¹ – тема

Рассмотрено на заседании кафедры фармакологии и биоинформатики, протокол № 18 от «31» мая 2025 года.

Заведующий кафедрой фармакологии и биоинформатики академик РАН, З.Д.Н. РФ, д.м.н., профессор

J. anar А.А. Спасов

 $^{^2}$ — сущностное содержание 3 — один тематический блок включает в себя несколько занятий, продолжительность одного занятия 45 минут, с перерывом между занятиями не менее 5 минут