Оценочные средства для проведения аттестации по дисциплине «Аналитическая химия» для обучающихся 2024 года поступления по образовательной программе 33.05.01 Фармация, направленность (профиль) Фармация (специалитет), форма обучения очная на 2025-2026 учебный год

1. Оценочные средства для проведения текущей аттестации по дисциплине

Текущая аттестация включает следующие типы заданий: тестирование, решение ситуационной задачи, собеседование, контрольная работа.

1.1. Примеры тестовых заданий

Проверяемые индикаторы достижения компетенции: УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ; ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.

1.Тип аналитической химической реакции

 $[Ag(NH_3)_2]Cl + 2 HNO_3 \rightarrow AgCl + 2 NH_4NO_3$

- 1) обмена ионов
 - 2) комплексообразования
 - 3) осаждения
- 4) окисления-восстановления
- 5) каталитическая
- 2. Тип аналитической химической реакции

$$CuSO_4 + 4 NH_4OH \rightarrow [Cu(NH_3)_4]SO_4 + 4 H_2O$$

- 1) обмена ионов
- 2) комплексообразования
- 3) осаждения
- 4) окисления-восстановления
- 5) каталитическая
- 6) комбинированная
- 3. Тип аналитической химической реакции

$$PbS + 4 H_2O_2 \rightarrow PbSO_4 + 2 H_2O$$

- 1) обмена ионов
- 2) комплексообразования
- 3) осаждения
- 4) окисления-восстановления
- 5) комбинированная
- 4. Определение щелочи и карбонатов при совместном присутствии проводится методом:
 - 1) кислотно -основного титрования;
 - 2) окислительно восстановительного титрования;
 - 3) осадительного титрования;
 - 4) комплексонометрического титрования
 - 5) методом пипетирования
- 5. Комплексон III- это:
 - 1) нитрилуксусная кислота;
 - 2) этилендиаминтетрауксусная кислота;
 - 3) динатриевая соль этилендиаминтетрауксусной кислоты;
 - 4) диаминциклогексантетрауксусная кислота.
 - 5) Трилон Б
- 6. Хлорид ионы по Фольгарду определяют:

- 1) прямым титрованием;
- 2) косвенным титрованием;
- 3) обратным титрование;
- 4) определить невозможно
- 5) обратным титрованием с йодометрическим окончанием

1.2. Примеры ситуационных задач

Проверяемые индикаторы достижения компетенции: ПК УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ; ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.

- 1. К навеске 1,5г технического Na_2SO_3 после растворения прибавили 100мл 0,1н раствора йода. На титрование избытка йода израсходовали 40 мл раствора, в 200мл которого содержится 2, 482 $Na_2S_2O_3$. Определить процентное содержание Na_2SO_3
- 2. На титрование 2,5 мл 0,1н раствора щавелевой кислоты израсходовано 27,5 мл раствора $KMnO_4$. Рассчитайте титр раствора $KMnO_4$
- 3. Теория экстракционных методов. Экстракционное равновесие. Закон распределения Нернста-Шилова. Константа распределения. Коэффициент распределения.
- 4. Перманганатометрия и иодометрическое тирование как фармакопейные методы анализа. Применение перманганато- и ио- домётрйи в биологии, медицине и фармации.
- **5.** Количественный полярографический анализ: определение концентрации анализируемого вещества методом добавок, методом стандартных растворов. Применение полярографии.

6.

1.3 Примеры контрольных вопросов для собеседования

Проверяемые индикаторы достижения компетенции: УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ; ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.

- 1. Качественный химический анализ. Классификация методов (дробный, систематический анализ). Основные понятия в качественном анализе. Аналитические эффекты. Аналитическая классификация катионов (сульфидная, аммиачно-фосфатная, кислотно-основная).
- 2. Протолитическое равновесие в буферных растворах. Типы буферных систем, примеры и формы записи. Значение рН в буферных растворах. Уравнение Гендерсона- Гассельбаха.

1.4 Примеры вариантов контрольной работы:

Проверяемые индикаторы достижения компетенции: УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ; ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.

Вариант №1.

- 1. В 0,45л содержится 4,5 г нитрита натрия. Вычислить pH, константу гидролиза и степень гидролиза соли. K_{HNO2} = $4*10^{-4}$.
- 2. Определить ОВ потенциал пары BrO_3 , $H^+|Br^-$, если концентрации $C(BrO_3) = C(H^+) = C(Br^-) = 0,01$ моль/л, а стандыптный ОВ потенциал этой пары при комнатной температуре $E^0 = 1,45$ В. ОВ полуреакция может быть представлена в виде:

$$BrO_3^- + 6H^+ + 6e = Br^- + H_2O$$

- 3. Рассчитать концентрацию иона Hg^{2+} в 0.05М растворе $K_2[HgI_4]$ в 1 л которого дополнительно растворено 0.6 г иодида калия. $KH = 5 \cdot 10^{-31}$
- 4. $KMnO_4+H_2SO_4+FeSO_4---$
- 5. Характеристика катионов V аналитической группы. Качественные реакции.
- 6. Равновесия в растворах комплексных соединений.

Вариант 2.

- 1. Какую навеску буры следует взять для приготовления 0,5 л 0,1 М раствора.
- 2. Для определения массовой доли свободных жирных кислот в льняном масле навеску его 0,5000 г растворили в 20 мл спирто-эфирной смеси и оттитровали 0,05 М растворов КОН. При этом было израсходовано 2,45 сл КОН. Определить массовую долю жирных кислот, если молярная масса кислот льняного масла равна 274 г/моль.

- 3. Навеску карбоната натрия массой 0,1054 г обработали 25,00 мл 0,2 М раствора HCl. Избыток кислоты оттитровали 25,40 мл 0,12 М раствора NaOH. Вычислить массовую долю Na₂CO₃ в образце.
- 4. Кривые кислотно-основного титрования: титрование сильной кислоты, сильным основанием.
- 5. Требования к реакциям в титриметрическом анализе.

1.5. Оценочные средства для самостоятельной работы обучающихся

Оценка самостоятельной работы включает в себя тестирование.

1.5.1. Примеры тестовых заданий с одиночным ответом

Проверяемые индикаторы достижения компетенции: УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.

- 1. Выберите один ответ из пяти. Для обнаружения нона K^+ не используют
- 1) винную кислоту;
- 2) перхлорат аммония;
- 3) гексанитрокобальтат (III) натрия
- 4) диоксоуранилаиетат
- 5) окрашивание пламени
- 2. Выберите один ответ из пяти. Аналитическая химическая реакция это реакция, сопровождающаяся
- а) изменением окраски раствора
- б) определенным аналитическим эффектом за счет образования продукта реакции, обладающего специфическими свойствами
- в) изменением рН раствора
- г) растворением осадка
- д) образованием осадка
- 3. . Выберите один ответ из пяти. Микрокристаллоскопическая реакция сопровождается образованием
- а) кристаллов характерной формы
- б) окрашенных перлов
- в) мелкокристаллического осадка
- г) окрашенных кристаллов
- д) аморфного осадка
- 4. . Выберите один ответ из четырех. Реактив на катион калин
- а) оксалат аммония
- б) щавелевая кислота
- в) гидрофосфат натрия
- г) гексститрокобальтат (III) натрия
- 5. Выберите один ответ из четырех. Катион натрии окрашивает илами в
- а) желтый цвет
- б) фиолетовый цвет
- в) кирпично-красный цвет
- г) зеленый цвет
- 6. Выберите один ответ из четырех. Солевой эффект это
- 1) влияние на растворимость труднорастворимого электролита соли, содержащей одноименный ион, и понижающей растворимость малорастворимого электролита
- 2) влияние на растворимость труднорастворимого электролита соли, не имеющей одноименный ион, и понижающей растворимость малорастворимого электролита
- 3) влияние на растворимость труднорастворимого электролита соли, содержащей одноименный ион, и повышающей растворимость малорастворимого электролита
- 4) влияние на растворимость труднорастворимого электролита соли, не имеющей одноименный ион, и повышающей растворимость малорастворимого электролита
- 5) влияние на растворимость труднорастворимого электролита любого иона в сторону уменьшения растворимости

- 7. Выберите один ответ из четырехп. К физическим методам количественного определении относится:
- а) перманганатометрия
- б) иодометрия
- в) рефрактометрия
- г) броматометрия

8.Выберите один ответ из четырех. Метод нерманганатометрни проводит при pH:

- a) pH = 7
- 6) pH > 7
- pH < 7
- 9. Выберите один ответ из четырех. Окислительно-восстановительным методом ивлнетси:
- а) метод Мора
- б) меркуриметрия
- в) йодометрия
- г) трилонометрия
- 10. Выберите один ответ из четырех. К методам осаждения относится:
- а) трилонометрия
- б) алкалиметрия
- в) аргентометрия
- г) нитрометрия
- 1.5.2. Примеры тестовых заданий с множественным выбором и/или на сопоставление и/или на установление последовательности

Проверяемые индикаторы достижения компетенции: : УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ; ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.

- 1. Выберите три ответа из шести. К методам окислительно-восстановительного титрования относятся:
- а) дихроматометрия
- б) перманганатометрия
- в) цериметрия
- г) аргентометрия
- д) ацидиметрия
- е) алкалиметрия
 - 2. Выберите три ответа из шести. К методам осадительного титрования относятся:
- а) Метод Мора
- б) Метод Фаянса
- в) Метод Фольгарда
- г) Редуктометрия
- д) Комплексонометрия
- е) Метод отрыва кольца
 - 3. Выберите три ответа из шести. Электрохимическим методам анализа относятся:
- а) Потенциометрия
- б) Полярография
- в) Кондуктометрия
- г) Фотоколориметрия
- д) Спектрофотометрия
- е) Хроматография
- 4. Установите аналитического эффекта и катиона, подобрав к каждой позиции, данной в первом столбце, соответствующую позицию из второго столбца:

Аналитический эффеки	Катион
1. Окрашивает пламя в фиолетовый цвет	A. Na ⁺
2. Окрашивает пламя в желтый цвет	Б. Ca ²⁺

3. Окрашивает пламя в красный цвет	B. Ba ²⁺
4. Окрашивает пламя в зеленый цвет	Γ . K^+

5. Установите соответствие измеряемого параметра и метода, данной в первом столбце, соответствующую позицию из второго столбца:

Измеряемый параметр	Метод
1. электродный потенциал	А. Спектрофотометрия
2. оптическая плотность	Б. Потенциометрия
3. электрическая проводимость	В. Кондуктометрия
4. коэффициент светопропускания	
5. pH	
6. сопротивление раствора	

6. Установите соответствие индикатора и метода количественного анализа, данной в первом столбце, соответствующую позицию из второго столбца:

Индикатор	Метод количественного анализа
1. Метиловый оранжевый	А. Метод Мора
2. Хромат калия	Б. Ацидиметрия
3. Крахмал	В. Комплексонометрия
4. Мурексид	Г. Иодометрия
5. Эозин	Д.Нитритометрия
6. Тропеолин 00	Е. Метод Фаянса

- 7. Установите последовательность операций в методе Гравиметрия. Запишите соответствующую последовательность цифр:
- 1. фильтрование
- 2. взвешивание навески
- 3. расчет навески и объема осадителя
- 4. расчет результатов и ошибки анализа
- 5. получение осаждаемой формы
- 6. растворение навески
- 7. Получение и взвешивание гравиметрисеской формы.
- 8. Установите последовательность стадий титриметрического анализа. Запишите соответствующую последовательность цифр.
- 1. отбор аликвоты
- 2. титрование
- 3. приготовление анализируемого раствора
- 4. визуальное определение КТТ
- 5. Добавление индикатора
- 9. Установите последовательность стадий Спектрофотометрического определения. Запишите соответствующую последовательность цифр.
- 1. измерение оптической плотности стандартных растворов
- 2. построение градуировочного графика
- 3. измерение оптической плотности анализируемого раствора
- 4. приготовлении серии стандартных растворов
- 5. расчеты результатов анализа
- 10. Установите последовательность стадий Хроматографирования. Запишите соответствующую последовательность цифр.
- 1. Подготовить хроматографическую пластинку
- 2. Поместить растворитель в хроматографическую колонку
- 3. поместить хроматографическую пластинку в колонку
- 4. нанести пробы анализируемых веществ на хроматографическую пластинку
- 5. Высушить хроматографическую пластинку после хроматографирования
- 1.5.3. Примеры заданий открытого типа (вопрос с открытым ответом)

Проверяемые индикаторы достижения компетенции: ОПК-1.1.1.

- 1. Рассчитайте, какой объем хлороводородной кислоты с плотностью 1,170 г/мл потребуется для приготовления 200 мл раствора с концентрацией HCl 0,05 моль/л.
- 2. Для стандартизации раствора КОН было взято 0,02г $H_2C_2O_4$ $2H_2O$. На титрование пошло 15 мл раствора КОН. Чему равна концентрация титранта?

- 3. Вычислить молярную концентрацию и титр раствора HCl, если на титрование 0,4217 г буры израсходовано 17,5 мл этой кислоты.
- 4. Для определения молярной концентрации эквивалента H_2SO_4 к 10.0 мл ее добавили избыток $BaCl_2$. Масса полученного осадка $BaSO_4$ после фильтрования, прокаливания и взвешивания составила 0.2762г. Вычислить молярную концентрацию эквивалента раствора H_2SO_4 и титр.
- 5. Навеску $H_2C_2O_4$ $2H_2O$ массой 0,6000 г растворили в мерной колбе вместимостью 100,0 мл. На титрование 20,00 мл полученного раствора израсходовали 18,34 мл NaOH. Определить молярную концентрацию раствора NaOH и его титр по $H_2C_2O_4$
- 4.2 Оценочные средства для проведения промежуточной аттестации по дисциплине Промежуточная аттестация проводится в форме экзамена.

Перечень вопросов для подготовки к промежуточной аттестации:

No	Вопросы для промежуточной аттестации студента	Проверяемые индикаторы достижения компетенции
1	Аналитическая химия и химический анализ. Задачи аналитической химии в биологии и медицине. Основные разделы современной аналитической химии. Классификация. Основные понятия химического анализа. Применение методов аналитической химии в фармации.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
2	Аналитические признаки веществ и аналитические реакции. Классификация и характеристика аналитических реакций. Чувствительность, специфичность и селективность.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
3	Способы увеличения чувствительности и понижения предела обнаружения веществ. Методы обнаружения веществ. Мешающее влияние ионов.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
4	Качественный химический анализ. Классификация методов (дробный, систематический анализ). Основные понятия в качественном анализе. Аналитические эффекты. Аналитическая классификация катионов (сульфидная, аммиачно-фосфатная, кислотно-основная).	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
5	Кислотно-основная классификация катионов. Принципы классификации, связь с периодической таблицей Д.И.Менделеева. Преимущества и недостатки классификации.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
6	Аналитическая классификация анионов. Основные аналитические реакции анионов различных групп.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
7	Понятие пробы. Виды проб. Отбор средней пробы жидкости, твердого тела и газообразной массы пробы.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1;

	Подготовка образца к анализу.	ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
8	Сильные и слабые электролиты. Концентрация ионов в растворе. Активность электролитов и ионов. Ионная сила растворов электролитов.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
9	Закон действующих масс. Применение закона действующих масс в аналитической химии. Основные типы равновесий, применяемых в анализе.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
10	Константы равновесий для различного типа реакций. Формы записи констант равновесия всех типов аналитических процессов. Истинные термодинамические константы равновесия.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
11	Протолитическое равновесие. Протолити- ческая теория кислот и оснований. pH водных растворов. Константы кислотности и основности.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
12	Протолитическое равновесие в буферных растворах. Типы буферных систем, примеры и формы записи. Значение рН в буферных растворах. Уравнение Гендерсона- Гассельбаха.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
13	Буферная ёмкость, буферное действие. Использование буферных систем в фармацевтическом анализе. Примеры использования и назначение.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
14	Протолитическое равновесие в водных растворах солей. Степень и константа гидролиза. Расчёт рН в растворах гидролиза солей.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
15	Типы гидролиза в зависимости от характера соли. Формы записи, краткие ионные уравнения. Использование гидролиза в аналитической практике.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
16	Протолитическое равновесие в неводных растворах. Классификация растворителей. Константа автопротолиза. Сила кислот и оснований в неводных растворах. Применение неводных растворителей в анализе.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.

17	Окислительно-восстановительные системы. Типы окислительно-восстановительных процессов и методы их уравнивания.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
18	Потенциал реакции. Уравнение Нернста- Петерса. (ЭДС реакции). Направление протекания окислительновосстановительных реакций. Влияние различных факторов на направление протекания ОВ реакций.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
19	Вывод константы равновесия окислительновосстановительной реакции. Использование окислительно-восстановительных реакций в аналитической химии.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
20	Гетерогенные равновесные системы. Растворимость и произведение растворимости, взаимосвязь между ними. Условия образования осадков. Дробное осаждение.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
21	Влияние различных факторов на растворимость осадков (температура, природа растворителя, солевого эффекта, рН, присутствия комплексообразователей, окислителей и восстановителей). Использование гетерогенных равновесных систем в аналитической химии.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
22	Осадки, их свойства. Зависимость их структуры от различных факторов: растворимости, концентрации, рН среды, температуры, скорости осаждения.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
23	Общая характеристика комплексных систем. Равновесия в растворах комплексных соединений. Константа устойчивости и нестойкости.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
24	Способность металлов и лигандов к ком- плексообразованию. Комплексы металлов с органическими лигандами. Устойчивость хелатных соединений.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
25	Важнейшие органические комплексообразующие реагенты, применяемые в анализе (дитизон, 8- оксихинолин, диметилглиоксим, дифенилкарбазид и другие). Примеры использования ОАР в аналитической практике.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
26	Влияние различных факторов на комплексообразование в растворах (рН, концентрация реагентов, добавки посторонних ионов, ионная сила, температура).	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.

27	Маскирующие комплексообразователи (тиомочевина, гидроксиламин, лимонная и щавелевая кислота и др.) Роль маскирующих комплексообразователей в анализе.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
28	Функционально-аналитические хромофорные и ауксохромные группы в органических реагентах. Классификация ОАР. Применение органических реагентов в аналитической химии.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
29	Методы разделения и концентрирования веществ. Классификация и краткая характеристика этих методов (испарение, озоле- ние, осаждение, соосаждение, кристаллизация, экстракция, адсорбция, хроматография).	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
30	Теория экстракционных методов. Экстракционное равновесие. Закон распределения Нернста-Шилова. Константа распределения. Коэффициент распределения.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
31	Влияние различных факторов на процессы экстракции (объем экстрагента, число экстракций, рН среды). Классификация экстракционных систем, используемых в аналитической практике. Условия экстракции органических и неорганических систем.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
32	Хроматография. Сущность метода. Классификация хроматографических методов анализа. Адсорбционная и осадочная хроматография, применение в фармации.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
33	Плоскостная хроматография. Сущность тонкослойной и бумажной хроматографии. Материалы и растворители, требования к ним. Применение хроматографии в фармации.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
34	Ионообменная хроматография. Сущность метода. Иониты. Ионообменное равновесие.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
35	Газовая и газожидкостная хроматография. Сущность метода. Классификация. Понятие о теории метода. Параметры удерживания и параметры разделения. Влияние температуры на разделение.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
36	Методы количественной обработки хроматограмм (абсолютная калибровка, внутренний стандарт). Понятие о жидкостной хроматографии. Сущность	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1;

	метода.	ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
37	Теория экстракционных методов. Экстракционное равновесие. Закон распределения Нернста-Шилова. Константа распределения. Коэффициент распределения.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
38	Высокоэффективная жидкостная хроматография. Применение хроматографических методов в фармации.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
39	Применение химических, физических и физико- химических методов для идентификации веществ в качественном анализе.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
40	I и II аналитическая группа катионов. Групповые реагенты. Характерные реакции на ионы: $\mathrm{Na}^+, \mathrm{K}^+, \mathrm{NH_4}^+, \mathrm{Ag}^+, \mathrm{Hg_2}^{2^+}, \mathrm{Pb}^{2^+}.$	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
41	III и IV аналитическая группа катионов. Групповые реагенты. Характерные реакции на катионы: Ca^{2+} , Ba^{2+} , Al^{3+} , Cr^{3+} , Zn^{2+} , $Sn(II)$, $Sn(IV)$.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
42	Анализ смесей катионов I - III аналитических групп. Сущность и схема анализа. Качественные реакции и условия их выполнения	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
43	V и VI аналитическая группа катионов. Групповые реагенты. Характерные реакции на катионы: Mg^{2+} , Mn^{2+} , Fe^{2+} , Fe^{3+} , Bi^{3+} , Co^{2+} , Ni^{2+} , Cu^{2+} , Mg^{2+} .	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
44	Анализ смесей катионов IV - VI аналитических групп. Сущность и схема анализа. Качественные реакции и условия их выполнения.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
45	Количественный анализ. Классификация методов. Требования, предъявляемые к реакциям в количественном анализе. Роль и значение количественного анализа в фармации.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.

46	Источники погрешностей анализа. Правильность и воспроизводимость результатов количественного анализа. Классификация погрешностей.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
47	Систематическая погрешность, случайная погрешность. Оценка правильности результатов анализа. (Использование стандартных образцов).	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
48	Некоторые понятия математической статистики и их использование в количественном анализе. Случайная величина, генеральная совокупность, выборка, распределение Стьюдента.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
49	Статистическая обработка и представление результатов количественного анализа. Среднее значение определяемой величины, случайные отклонения, дисперсия, доверительный интервал.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
50	Сущность титриметрического метода анализа. Классификация методов, примеры.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
51	Требования к реакциям в титриметриче- ских методах анализа. Способы и приемы титрования. Метод отдельных навесок и пипетирования. Расчетные формулы.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
52	Первичные стандартные вещества и первичные стандартные растворы. Требования к ним. Приготовление и стандартизация растворов. Титранты, рабочие растворы. Примеры первичных стандартов и титран- тов различных методов титрования.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
53	Способы титрования: прямое, обратное, заместительное. Сущность, схемы и конкретные примеры способов и условий титрования	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
54	Кислотно-основное титрование. Сущность данного метода. Реакции, используемые в данном методе, требования к ним.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
55	Индикаторы кислотно-основного титрования. Точка эквивалентности в титровании, ее фиксация с помощью индикаторов.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.

56	Индикаторные ошибки. Теории кислотно- основных индикаторов, интервалы и пока затели (рТ) перехода окраски к-о индикаторов.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
57	Кривые кислотно-основного титрования, их расчёт и построение, титрование	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
58	Три типа кривых: титрование сильной кислоты сильным основанием. Точка эквивалентности, оптимальные индикаторы.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
59	Три типа кривых: титрование слабой кислоты сильным основанием, Точка эквивалентности, подбор индикаторов, оптимальные индикаторы.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
60	Типы кривых кислотно-основного: титрование слабого основания сильной кислотой. Точка эквивалентности. Индикаторы.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
61	Разновидности метода нейтрализации. Ацидимётрия и алкалиметрия в биологии, медицине и фармации.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
62	Окислительно-восстановительное титрование. Сущность, классификация, примеры. Основные требования к реакциям.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
63	Индикаторы в окислительно-восстановительном титровании. Классификация индикаторов. Интервал перехода окраски. Механизм их действия.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
64	Кривые окислительно-восстановительного титрования. Расчёт и построение кривых окислительновосстановительного титрования. Определение точки эквивалентности и эквивалентного объема титранта.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
65	Влияние рН, температуры и катализаторов на скачок при окислительно-восстановительном титровании. Ошибки в данном виде титрования.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1;

		ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
66	Перманганатометрия. Сущность метода. Приготовление и стандартизация титрантов. Реакции перманганата в различных средах (рН).	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
67	Иодомётрйя. Сущность метода, титранты, индикаторы.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
68	Иодиметрия, иодатометрия. Титранты, способы титрования, индикаторы титрования. Использование методов в фармации	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
69	Перманганатометрия и иодометрическое тирование как фармакопейные методы анализа. Применение перманганато- и ио- домётрйи в биологии, медицине и фармации.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
70	Хлориодометрия. Сущность метода, титранты, индикаторы, применение в фармации.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
71	Бромо- и броматометрия. Сущность методов. Титранты, индикаторы, цусловия титрования.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
72	Применение бромо- и броматометрии в фармацевтическом анализе.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
73	Нитритометрия. Сущность методоа. Титранты, индикаторы. Применение.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
74	Сульфаниламидные препараты и другие лекарственные средства, анализируемые методом нитритометрии.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.

75	Дихроматометрия. Сущность методов. Титранты, индикаторы. Применение.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
76	Расчеты навесок, концентраций и титра растворов в титриметрических методах анализа	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
77	Способы выражения концентраций в тит- риметрическом анализе (молярная, молярная концентрация эквивалента, титр, титр по определяемому веществу, поправочный коэффициент, массовая доля).	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
78	Титриметрический анализ. Основные понятия (аликвота, титрант, точка эквивалентности, индикатор, кривая титрования, степень оттитрованности). Требования, предъявляемые к реакциям и реактивам в титриметрии.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
79	Приготовление рабочих растворов. Стандартизация рабочих растворов методом отдельных навесок; методом пипетирования.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
80	Гравиметрический метод анализа. Сущность. Ход определения. Методика выполнения.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
81	Расчёт массы анализируемой пробы, Расчёт объема осадителя. Формулы для расчета массы, объема реагентов и процента ошибок.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
82	Гравиметрический анализ. Преимущества и недостатки. Применение метода для оценки лекарственных препаратов.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
83	Понятие об осадительном титровании. Сущность, титранты. Требования к реакциям. Классификация методов осаждения.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
84	Индикаторы в осадительном титровании. Классификация индикаторов и механизм их действия	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.

85	Аргентометрическое титрование. Сущность. Титранты, их приготовление и стандартизация. Условия хранения титрантов.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
86	Метод Мора, сущность, условия проведения, индикаторы, применение фармации.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
87	Осадительное титрование. Метод Фольгарда. Сущность, титранты, условия выполнения, индикаторы, применение в фармации.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
88	Осадительное титрование. Метод Фаянса. Сущность, титранты, индикаторы, применение.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
89	Сульфатометрический метод анализа. Сущность, титранты, индикаторы сульфатометрии.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
90	Меркуриметрия и меркурометрия. Сущность, титранты, индикаторы, применение. Достоинства и недостатки метода.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
91	Понятие о комплексонометрическом методе титрования. Сущность, требования к реакциям.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
92	Комплексоны, состав, свойства, механизм их действия. Структурные и краткие формулы комлексонов. Основность и дентатность комплексонов.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
93	Способы титрования в комплексономет- рии. Выбор способа, обоснование выбора. Схемы анализа.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
94	Приготовление титрантов в комплексо- номётрии. Применение данного метода в биологии, медицине и в фармации.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1;

		ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
95	Индикаторы в комплексонометрии. Выбор индикаторов и механизм их действия. Основные индикаторы метода.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
96		УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
97	Кривые комплексонометрического титрования. Факторы влияющие на скачок титрования. Выбор индикаторов Кривые осадительного титрования. Расчет и построение кривых титрования. Выбор индикаторов	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1;
98		ПК-5.1.1; ПК-5.2.1; ПК-5.3.1. УК-1.1.1; УК-1.2.1; УК-1.3.1;
98	Титрование в неводных средах. Титранты, индикаторы, применение.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
99	Использование неводного титрования в медицине и фармации	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
100	Инструментальные методы анализа. Классификация, преимущества по сравнению с титриметрическими и другими методами анализа.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
101	Оптические методы. Классификация методов. Сущность. Закон светопоглощения Бугера - Ламберта - Бера.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
102	Методы колориметрии и фотоколориметрии. Сущность методов. Достоинства и недостатки.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
103	Применение фотоэлектроколориметрии в фармацевтическом анализе.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.

104	Количественный фотометрический анализ. Сущность метода. Разновидность методов, их использование.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
105	Условия проведения фотометрического анализа (выбор фотометрической реакции, длины волны, концентрации раствора, длины кюветы).	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
106	Экстракционно-фотометрический анализ. Сущность метода, его преимущества. Условия проведения. Применение метода в фармации.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
107	Люминесцентный анализ. Сущность метода. Классификация различных видов люминесценции, применение в аналитической химии.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
108	Фотометрическое определение концентрации анализируемого вещества: Метод градуировочного графика, метод одного стандарта, метод добавки стандарта.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
109	Фотометрические методы определения концентраций нескольких веществ при их совместном присутствии.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
110	Электро-химические методы анализа. Классификация методов, их достоинства и недостатки.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
111	Потенциометрический метод анализа. Сущность метода. Прямая потенциометрия. Применение метода в аналитической практике.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
112	Определение концентрации анализируемого вещества в прямой потенциометрии (метод градуировочного графика, метод стандартных добавок).	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
113	Сущность потенциометрического титрования. Типы потенциометрического титрования. Применяемые электроды.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.

114	Построение и анализ кривых потенциометрического титрования. Интегральные и дифференциальные кривые, метод второй производной, метод Грана.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
115	Применение потенциометрии и потенциометрического титрования в аналитике и фармации.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
116	Кондуктометрический анализ. Принцип метода. Прямая кондуктометрия, факторы, влияющие на эквивалентную электропроводность электролитов. Применение в фармации.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
117	Виды кондуктометрического титрования. Анализ электродов для проведения кондуктометрического титрования.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
118	Кондуктометрическое титрование. Сущность метода. Типы кривых кондуктометрического титрования, их анализ.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
119	Применение кондуктометрического титрования в медицине и фармации.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
120	Кулонометрический анализ. Принцип метода. Его достоинства и использование.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
121	Прямая кулономётрия. Способы определения количества электричества, прошедшего через раствор. Применение метода.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
122	Кулонометрическое титрование. Сущность метода. Условия проведения. Индикация точки эквивалентности, применение метода.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
123	Полярографический анализ. Общие понятия. Принцип метода.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1;

		ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
124	Полярографические кривые. Потенциал полуволны. Связь диффузионного тока с концентрацией.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
125	Количественный полярографический анализ: определение концентрации анализируемого вещества методом градуировочного графика.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
126	Количественный полярографический анализ: определение концентрации анализируемого вещества методом добавок, методом стандартных растворов. Применение полярографии.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
127	Методы ионоообменной хроматографии. Применение в фармации.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
128	Ионно-обменное равновесие. Аниониты и катиониты, назначение и использование.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
129	Устройство и принцип действия газожидкостного хроматографа. Основные узлы и их назначение.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
130	Типы детекторов, классификация по назначению и использования. Катарометр. Устройство, принцип действия.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
131	Основные методы расчетов, применяемых в газо- жидкостной хроматографии: метод градуировочного графика, метод внутреннего стандарта, метод нормализации.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.
132	Сочетание методов ионно-обменной хроматографии с другими аналитическими методами анализа.	УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ;ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.

Промежуточная аттестация включает следующие типы заданий: тестирование, решение ситуационных задач, собеседование по вопросам.

2.1. Примеры тестовых заданий

Проверяемые индикаторы достижения компетенции: УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ; ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.

1.Тип аналитической химической реакции

 $[Ag(NH_3)_2]Cl + 2 HNO_3 \rightarrow AgCl + 2 NH_4NO_3$

- 6) обмена ионов
- 7) комплексообразования
- 8) осаждения
- 9) окисления-восстановления
- 10) каталитическая
- 2. Тип аналитической химической реакции

$$CuSO_4 + 4 NH_4OH \rightarrow [Cu(NH_3)_4]SO_4 + 4 H_2O$$

- 7) обмена ионов
- 8) комплексообразования
- 9) осаждения
- 10) окисления-восстановления
- 11) каталитическая
- 12) комбинированная
- 3. Тип аналитической химической реакции

$$PbS + 4 H_2O_2 \rightarrow PbSO_4 + 2 H_2O$$

- 6) обмена ионов
- 7) комплексообразования
- 8) осаждения
- 9) окисления-восстановления
- 10)комбинированная
- 4.Определение щелочи и карбонатов при совместном присутствии проводится методом:
 - 6) кислотно -основного титрования;
 - 7) окислительно восстановительного титрования;
 - 8) осадительного титрования;
 - 9) комплексонометрического титрования
 - 10) методом пипетирования
- 5. Комплексон III- это:
 - 6) нитрилуксусная кислота;
 - 7) этилендиаминтетрауксусная кислота;
 - 8) динатриевая соль этилендиаминтетрауксусной кислоты;
 - 9) диаминциклогексантетрауксусная кислота.
 - 10)Трилон Б
- 6. Хлорид ионы по Фольгарду определяют:
 - 6) прямым титрованием;
 - 7) косвенным титрованием;
 - 8) обратным титрование;
 - 9) определить невозможно
 - 10) обратным титрованием с йодометрическим окончанием

2.2 Примеры вопросов для собеседования

Проверяемые индикаторы достижения компетенции: УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ; ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.

- 1. Аналитическая химия и химический анализ. Задачи аналитической химии в биологии и медицине. Основные разделы современной аналитической химии. Основные понятия химического анализа.
- 2. Дихроматометрия. Сущность методов. Титранты, индикаторы. Применение
- 3. Инструментальные методы анализа. Классификация, преимущества по сравнению с титриметрическими и другими методами анализа.

2.3 Примеры ситуационных задач

Проверяемые индикаторы достижения компетенции: УК-1.1.1; УК-1.2.1; УК-1.3.1; ОПК-1.1.1; ОПК-1.2.1 ; ОПК-1.3.1; ПК-5.1.1; ПК-5.2.1; ПК-5.3.1.

- 1. К подкисленному раствору фармакопейного препарата H_2O_2 прибавили избыточное количество КЈ и несколько капель раствора (NH4) $_2$ MnO $_4$ как катализатора. Выделившийся J_2 оттитровали 22,40 мл 0,1010 и $Na_2S_2O_3$. Сколько граммов H_2O_2 содержалось в растворе
- 2. Вычислить процентное содержание CaCO3 и MgCO₃ в пробе биологического материала, если при растворении 1,00 г пробы и соответствующей обработке объем раствора довели до 100 мл и на титрование 20 мл его для определения суммы Са и Mg затратили 19,625 мл 0,05М раствора трилона Б, а на титрование магния израсходовали 6,26 мл того же раствора.

В полном объеме фонд оценочных средств по дисциплине доступен в ЭИОС ВолгГМУ по ссылке(ам): https://elearning.volgmed.ru/course/index.php?categoryid=254

Рассмотрено на заседании кафедры химии, протокол от «30» мая 2025 г. № 10.

Заведующий кафедрой

А.К. Брель