Оценочные средства для проведения аттестации по дисциплине «Молекулярная биология» для обучающихся по образовательной программе специалитета

по специальности 33.05.01 Фармация, направленность (профиль) Фармация, форма обучения очная на 2023- 2024 учебный год

Промежуточная аттестация по дисциплине проводится в форме экзамена, который проводится в два этапа (тестирование и собеседование по контрольным вопросам билета).

Перечень заданий для тестирования:

п/п №	Вопросы для 1 этапа экзамена (тестовый контроль)	Проверяемые компетенции
1.	К матричным биосинтезам относятся процессы: А) синтеза дезоксирибонуклеотидов; В) фолдинга белка; С) синтеза молекулы транспортной РНК; D) образования митотического веретена деления. 	УК -1; ОПК-1; ПК-7; ПК-12
2.	Мономерами нуклеиновых кислот являются:	УК -1; ОПК-1; ПК-7; ПК-12
3.	Первичная структура ДНК и РНК обеспечена химическими связями: А) дисульфидными; В) фосфодиэфирными; С) пептидными; D) водородными	УК -1; ОПК-1; ПК-7; ПК-12
4.	Уровнями компактизации ДНК в ядре клетки являются: А) протеосома; В) нуклеосома; С) сплайсосома; D) хромосома	УК -1; ОПК-1; ПК-7; ПК-12
5.	Азотистое основание, пентоза и остатки фосфорной кислоты входят в состав: а нуклеосом; b нуклеозидов; с нуклеотидов; d пептидов.	УК -1; ОПК-1; ПК-7; ПК-12

	Суботротоми пна ониторо ПЦV у оугоруют артиста.	
6.	Субстратами для синтеза ДНК у эукариот являются: А) нуклеиновые кислоты; В) нуклеозидтрифосфаты; С) аминокислоты; D) нуклеозидмонофосфаты.	УК -1; ОПК-1; ПК-7; ПК-12
7.	В составе гистонов в большем количестве представлены аминокислоты: А) триптофан и тирозин; В) лизин и аргинин; С) лейцин и изолейцин; D) глицин и глутамин.	УК -1; ОПК-1; ПК-7; ПК-12
8.	Репликация ДНК происходит в следующую фазу клеточного цикла: а М-фаза; b S-фаза; c G0-фаза; d G1-фаза.	УК -1; ОПК-1; ПК-7; ПК-12
9.	Итогом процесса транскрипции является: а синтез молекулы РНК; b формирование первичной структуры белка; с образование репликационной вилки; d D) синтез дезоксирибонуклеотидов.	УК -1; ОПК-1; ПК-7; ПК-12
10.	Ферменты, активирующие аминокислоты на этапе инициации трансляции: А) аминолевулинатсинтазы; В) аминоацил-тРНК-синтетазы; С) аминотрансферазы; D) моноаминооксидазы.	УК -1; ОПК-1; ПК-7; ПК-12
11.	Генетический код представляет собой: А) способ записи информации о структуре РНК в молекуле белка; В) способ записи информации о структуре белка в молекуле ДНК; С) способ записи информации о структуре ДНК в молекуле РНК; D) способ записи информации о структуре микроРНК в молекуле мРНК.	УК -1; ОПК-1; ПК-7; ПК-12
12.	Итогом процесса трансляции является: а синтез молекулы РНК; b формирование первичной структуры белка; с образование репликационной вилки; d D) синтез дезоксирибонуклеотидов.	УК -1; ОПК-1; ПК-7; ПК-12

13.	Сигналом к активации лактозного оперона у прокариот является: А) снижение концентрации глюкозы в клетке; В) повышение концентрации лактозы в клетке; С) снижение концентрации лактозы в клетке; D) повышение концентрации глюкозы в клетке	УК -1; ОПК-1; ПК-7; ПК-12
14.	Участок ДНК, расположенный на 5'-конце оперона, с которым способна связываться РНК-полимераза, называется: А) репрессор; В) оператор; С) промотор; D) терминатор.	УК -1; ОПК-1; ПК-7; ПК-12
15.	Сигналом к активации триптофанового оперона у прокариот является: А) снижение уровня триптофана в клетке; В) повышение уровня триптофана в клетке; С) ускоренный катаболизм белков; D) индукция ферментов, синтезирующих триптофан	УК -1; ОПК-1; ПК-7; ПК-12
16.	Лекарственными препаратами, ингибирующими процесс репликации, являются: а пенициллины; b фторхинолоны; c тетрациклин; d рифампицин.	УК -1; ОПК-1; ПК-7; ПК-12
17.	Какие из перечисленных ниже факторов могут вызвать денатурацию белка: а температура выше 600С; b взаимодействие с лигандом (субстратом, эффекторомрегулятором, кофактором); с отщепление части полипептидной цепи при действии протеолитических ферментов; d значительные изменения рН.	УК -1; ОПК-1; ПК-7; ПК-12
18.	К незаменимым аминокислотам относятся: а аланин; b валин; c глицин; d лизин.	УК -1; ОПК-1; ПК-7; ПК-12
19.	Какой связью соединены аминокислоты в молекуле белка? а водородной; b ионной; c дисульфидной; d D) пептидной.	УК -1; ОПК-1; ПК-7; ПК-12

	При начатуранни банкар атманастая:	
20.	При денатурации белков отмечается: а потеря биологической активности;	VIC 1. OTHE 1.
	в увеличение растворимости;	УК -1; ОПК-1; ПК-7; ПК-12
	с изменение первичной структуры;	11K-7, 11K-12
	d возникновение заряда на молекуле белка.	
	Какая связь характерна для первичной структуры белка?	
	а водородная;	УК -1; ОПК-1;
21.	ь дисульфидная;	ПК-7; ПК-12
	с гидрофобные взаимодействия;	,
	d пептидная	
	К разновидностям вторичной структуры белка относятся:	
	а глобула;	УК -1; ОПК-1;
22.	в альфа-спираль;	ПК-7; ПК-12
	с складчатая бета-структура;	1111 / , 1111 12
	d фибрилла.	
	Какие связи не участвуют в формировании структуры белка?	
	а Ковалентные пептидные связи;	УК -1; ОПК-1;
23.	ь Фосфодиэфирные связи;	ПК-7; ПК-12
	с Водородные связи;	1110 7, 1110 12
	d Гидрофобные взаимодействия между боковыми группами.	
	К фибриллярным белкам относятся:	
	а инсулин;	УК -1; ОПК-1;
24.	в гемоглобин;	ПК-7; ПК-12
	с альбумин;	1110 7, 1110 12
	d коллаген;	
	Какая химическая связь подвергается гидролизу при распаде	
	белков?	VIIC 1 OFFIC 1
25.	а водородная; b сложноэфирная;	УК -1; ОПК-1; ПК-7; ПК-12
	b сложноэфирная;c пептидная;	11K-7, 11K-12
	d связь гидрофобных взаимодействий	
	Связи, стабилизирующие третичную структуру в глобулярных	
	белках:	
	а водородные;	УК -1; ОПК-1;
26.	в пептидные;	ПК-7; ПК-12
	с гидрофобные взаимодействия;	
	d фосфодиэфирные.	
	Белки, обладающие четвертичной структурой:	
27.	а фосфорилаза;	VIIC 1 OFFIC 1
	в гистоны;	УК -1; ОПК-1;
	с гемоглобин;	ПК-7; ПК-12
	d лактатдегидрогеназа.	

28.	Что такое лиганд? а мономер четвертичного белка; b часть молекулы протомера, выполняющая определенную функцию; с скопление гидрофобных аминокислот на поверхности белка; d молекула или ион, которые связываются с белком	УК -1; ОПК-1; ПК-7; ПК-12
29.	Субъединица белка, имеющего четвертичную структуру, носит название: а протомер; b протромбин; c домен; d глобулин	УК -1; ОПК-1; ПК-7; ПК-12
30.	Что такое фолдинг белка? а расщепление на пептиды; b присоединение к лиганду; с сворачивание полипептидной цепи; d выпадение в осадок	УК -1; ОПК-1; ПК-7; ПК-12
31.	Белки, структура которых включает несколько субъединиц, называются: а олигомерные; b сложные; c регуляторные; d глобулярные.	УК -1; ОПК-1; ПК-7; ПК-12
32.	Какой процесс сопровождается потерей белком гидрофильных и приобретением гидрофобных свойств? а гидролиз; b денатурация; с диссоциация; d седиментация.	УК -1; ОПК-1; ПК-7; ПК-12
33.	Обратимая денатурация белка происходит при: а длительном нагревании; b действии сильных кислот; c кратковременном воздействии спирта; d добавлении солей тяжелых металлов.	УК -1; ОПК-1; ПК-7; ПК-12
34.	Для денатурированных белков характерно: а наличие водородных связей; b сохранение пептидных связей; c потеря первичной, вторичной и третичной структур; d наличие четвертичной структуры	УК -1; ОПК-1; ПК-7; ПК-12
35.	Как называется небелковая часть сложного фермента, прочно связанная с белковой частью? А) кофермент; В) холофермент; С) простетическая группа;	УК -1; ОПК-1; ПК-7; ПК-12

	D) апофермент.	
36.	Как называется белковая часть сложного фермента? а холофермент; b кофермент; c кофактор; d апофермент.	УК -1; ОПК-1; ПК-7; ПК-12
37.	Общие свойства, характерные для ферментов и неорганических катализаторов: а не сдвигают равновесия реакции; b высокая специфичность; с не расходуются в процессе реакции; d активность не зависит от температуры	УК -1; ОПК-1; ПК-7; ПК-12
38.	Ферменты из класса оксидоредуктаз катализируют реакции: а окислительно-восстановительные; b межмолекулярного переноса групп атомов и радикалов; c расщепления связей при участии молекулы воды; d присоединение групп по двойным связям	УК -1; ОПК-1; ПК-7; ПК-12
39.	Ферменты из класса трансфераз катализируют реакции: а окислительно-восстановительные; b межмолекулярного переноса групп атомов и радикалов; c расщепления связей при участии молекулы воды; d присоединение групп по двойным связям.	УК -1; ОПК-1; ПК-7; ПК-12
40.	Ферменты из класса гидролаз катализируют реакции: а окислительно-восстановительные; b межмолекулярного переноса групп атомов и радикалов 23; с расщепления связей при участии молекулы воды; d присоединение групп по двойным связям.	УК -1; ОПК-1; ПК-7; ПК-12
41.	Ферменты из класса лиаз катализируют реакции: а окислительно-восстановительные; b межмолекулярного переноса групп атомов и радикалов; с расщепления связей при участии молекулы воды; d присоединение групп по двойным связям.	УК -1; ОПК-1; ПК-7; ПК-12
42.	Отличия ферментов от неорганических катализаторов: а термостабильность; b высокая субстратная специфичность; с расходуются в результате катализа; d зависимость от активаторов и ингибиторов.	УК -1; ОПК-1; ПК-7; ПК-12

43.	Скорость реакций с участием простых ферментов зависит от: а концентрации субстрата; b концентрации продукта; c концентрации фермента; d молекулярной массы фермента	УК -1; ОПК-1; ПК-7; ПК-12
44.	Небелковая часть в структуре сложного фермента называется: а простетическая группа; b апофермент; c кофермент; d кофактор.	УК -1; ОПК-1; ПК-7; ПК-12
45.	Изоферменты – это множественные формы ферментов, которые: А) катализируют разные реакции; В) катализируют одну и ту же реакцию; С) не различаются по активности; D) не различаются по физико-химическим свойствам.	УК -1; ОПК-1; ПК-7; ПК-12
46.	АТФ-синтаза: а активируется электронами; b относится к группе мономерных белков; с взаимодействует с O ₂ ; d олигомерный белок внутренней мембраны митохондрий	УК -1; ОПК-1; ПК-7; ПК-12
47.	Азотистое основание, пентоза и остатки фосфорной кислоты входят в состав: а нуклеосом; b нуклеозидов; с нуклеотидов; d пептидов.	УК -1; ОПК-1; ПК-7; ПК-12
48.	Ферменты, активирующие аминокислоты на этапе инициации трансляции: а аминолевулинатсинтазы; b аминоацил-тРНК-синтетазы; c аминотрансферазы; d моноаминооксидазы	УК -1; ОПК-1; ПК-7; ПК-12
49.	Участок ДНК, расположенный на 5'-конце оперона, с которым способна связываться РНК-полимераза, называется: а репрессор; b оператор; c промотор; d терминатор.	УК -1; ОПК-1; ПК-7; ПК-12
50.	Сигналом к активации триптофанового оперона у прокариот является: а снижение уровня триптофана в клетке; b повышение уровня триптофана в клетке с ускоренный катаболизм белков; d ингибирование ферментов, синтезирующих триптофан.	УК -1; ОПК-1; ПК-7; ПК-12

	Парилогия моделиного моделиного надриния подменя моделиного ситиона	
51.	Процессы каскадного механизма передачи гормонального сигнала начинаются с: а фосфорилирование фермента; b взаимодействие гормона со специфическим рецептором; с активация протеинкиназы; d включение в работу белка трансдуктора	УК -1; ОПК-1; ПК-7; ПК-12
52.	Какие гормоны обладают мембранным механизмом действия: а производные стерана; b производные арахидоновой кислоты; c производные сложных белков; d производные аминокислот.	УК -1; ОПК-1; ПК-7; ПК-12
53.	Субстратами для синтеза ДНК у эукариот являются: а нуклеиновые кислоты; b нуклеозидтрифосфаты; c аминокислоты; d нуклеозидмонофосфаты.	УК -1; ОПК-1; ПК-7; ПК-12
54.	Какие связи не участвуют в формировании структуры белка? а ковалентные пептидные связи; b фосфодиэфирные связи; c водородные связи; d гидрофобные взаимодействия между боковыми группами.	УК -1; ОПК-1; ПК-7; ПК-12
55.	Какой связью соединены аминокислоты в молекуле белка? а водородной; b ионной; c дисульфидной; d пептидной.	УК -1; ОПК-1; ПК-7; ПК-12
56.	Сигналом к активации лактозного оперона у прокариот является: а снижение концентрации глюкозы в клетке; b повышение концентрации лактозы в клетке; c снижение концентрации лактозы в клетке; d повышение концентрации глюкозы в клетке.	УК -1; ОПК-1; ПК-7; ПК-12
57.	Функцию раскручивания двойной спирали ДНК в репликационной вилке у Е. coli выполняет: а хеликаза; b праймаза; c рестриктаза; d SSB-белки.	УК -1; ОПК-1; ПК-7; ПК-12
58.	Выберите ферменты репликации, участвующие в образовании 3', 5'- фосфодиэфирной связи: а ДНК-хеликаза; b ДНК-лигаза; c ДНК-топоизомераза I; d ДНК-топоизомераза II	УК -1; ОПК-1; ПК-7; ПК-12

59.	Та дочерняя цепь, которая синтезируется с перерывами, называется: а затравочная цепь (праймерная); b отстающая цепь (запаздывающая); с теломера; d ведущая цепь (лидирующая).	УК -1; ОПК-1; ПК-7; ПК-12
60.	Короткие цепи ДНК, связанные с РНК-праймерами на запаздывающей цепи, называются: а фрагментами Оказаки; b репликонами; c нулевой суперспиралью; d промотором.	УК -1; ОПК-1; ПК-7; ПК-12
61.	Какой фермент разрывает и сшивает заново цепи ДНК, не используя энергию АТФ? а ДНК-топоизомераза I; b хеликаза; c ДНК-лигаза; d теломераза	УК -1; ОПК-1; ПК-7; ПК-12
62.	Активный участок хромосомы, участвующий в репликации, представляет собой Y-образную структуру называемую: а репликативная вилка; b прайсосома; с репликон; d оридижин.	УК -1; ОПК-1; ПК-7; ПК-12
63.	Та дочерняя цепь ДНК, которая при репликации синтезируется непрерывно, называется а ведущая цепь (лидирующая); b отстающая цепь (запаздывающая); c затравочная цепь (праймерная); d фрагменты Оказаки.	УК -1; ОПК-1; ПК-7; ПК-12
64.	Фермент, который сшивает разрывы в ДНК, во время синтеза ДНК или ее репарации называется: а ДНК – N – гликозидаза; b ДНК–лигаза; c ДНК- эндонуклеаза; d инсертаза.	УК -1; ОПК-1; ПК-7; ПК-12
65.	Какой из ферментов узнает в ДНК дезаминированные основания и катализирует их гидролитическое отщепление дезоксирибозы: а АП – эндонуклеаза; b ДНК-гликозидаза; c ДНК-полимераза; d ДНК-лигаза.	УК -1; ОПК-1; ПК-7; ПК-12

66.	Выберите типы повреждений, которые устраняются ферментами репарации ДНК: а дезаминированные нуклеотиды; b димеры тимина; c комплементарная пара поврежденных нуклеотидов; d продукты депуринизации нуклеотидов.	УК -1; ОПК-1; ПК-7; ПК-12
67.	Дефекты в репарационной системе приводят к: а пигментная ксеродерма; b сахарный диабет; c подагра; d синдром Леша - Нихена.	УК -1; ОПК-1; ПК-7; ПК-12
68.	Геном эукариот не имеет: а прерывистых генов; b энхансеров; c оперонов; d последовательности ТАТА в промоторе.	УК -1; ОПК-1; ПК-7; ПК-12
69.	Свойство биологического кода, когда несколько триплетов кодируют только одну аминокислоту: а универсальность; b вырожденность; c триплетность; d непекрываемость.	УК -1; ОПК-1; ПК-7; ПК-12
70.	Сплайсинг м-РНК связан с: а вырезанием интронов и соединением экзонов; b участием микроРНК; c образованием сплайсомы; d эндоплазматическим ретикулулом.	УК -1; ОПК-1; ПК-7; ПК-12
71.	Аминокислота с т-РНК образует: а пептидную связь; b водородную связь; с простую эфирную связь; d сложноэфирную связь	УК -1; ОПК-1; ПК-7; ПК-12
72.	Рибосомы прокариот имеют константу седиментации: a 80 S; b 50 S; c 10 S; d 70 S.	УК -1; ОПК-1; ПК-7; ПК-12
73.	Укажите роль т-РНК в процессе трансляции: а защитная; b матричная; c адапторная; d каталитическая.	УК -1; ОПК-1; ПК-7; ПК-12

74.	Линейно упорядоченная совокупность нуклеотидов, контролирующая синтез функционально связанных друг с другом белков у прокариот, называется: а опероном; b оператором; с цистроном; d кодоном.	УК -1; ОПК-1; ПК-7; ПК-12
75.	Укажите механизм активация цАМФ-зависимой протеинкиназы: а фосфорилирование, дефосфорилирование; b частичный протеолиз; c ассоциация, диссоциация; d ковалентная модификация.	УК -1; ОПК-1; ПК-7; ПК-12
76.	Механизм передачи сигнала гормона зависит от: а локализации рецептора; b химической структуры гормона; с структуры G-белка; d внутриклеточного посредника гормона.	УК -1; ОПК-1; ПК-7; ПК-12
77.	Инозитолфосфатная система регулирует активность специфических протеинкиназ путем: а изменения их конформации; b фосфорилирования; c присоединения белков – ингибиторов; d частичного протеолиза.	УК -1; ОПК-1; ПК-7; ПК-12
78.	Биотехнология подразумевает: а использование в технологических целях живых систем; b использование денатурированных ферментов; с использование высоких температур; d использование высоких концентраций субстратов.	УК -1; ОПК-1; ПК-7; ПК-12
79.	К активным формам кислорода не относят: а пероксид водорода; b гидроксильный радикал; c озон; d оксид азота.	УК -1; ОПК-1; ПК-7; ПК-12
80.	К ферментам антиоксидантного действия относят: а каталаза; b монооксидаза; c глутатионпероксидаза; d супероксиддисмутаза.	УК -1; ОПК-1; ПК-7; ПК-12
81.	К запуску внешнего пути инициации апоптоза приводит: а выход цитохрома с из митохондрий; b активация рецепторов ФНО; c дефицит АТФ в клетке; d нарушение репарации ДНК.	УК -1; ОПК-1; ПК-7; ПК-12

	Инициация апоптоза может быть вызвана: а фрагментацией клеточного ядра;	
82.	b снижением стимуляции клеток факторами роста;	УК -1; ОПК-1;
02.	с нарушениями фолдинга белков;	ПК-7; ПК-12
	d активацией антиоксидантных систем.	
	Физиологическая роль апоптоза заключается в:	
	а стимуляции дифференцировки стволовых клеток;	УК -1; ОПК-1;
83.	в поддержании тканевого гомеостаза;	ПК-7; ПК-12
	с предотвращении генных мутаций;	,
	d снижении окислительного стресса.	
	Ключевой аминокислотой в активном центре каспаз является:	
0.4	а серин;	УК -1; ОПК-1;
84.	b цистеин;	ПК-7; ПК-12
	с аспартат; d аспаргин.	
	Отличительной особенностью апоптоза является:	
	а активация лизосомальных ферментов;	
85.	а активация лизосомальных ферментов, b набухание цитоплазмы;	УК -1; ОПК-1;
05.	с отсутствие развития воспалительной реакции;	ПК-7; ПК-12
	d нарушение целостности клеточной мембраны.	
	Внутренний путь инициации апоптоза характеризуется:	
	а активацией Fas-рецепторов;	
86.	b нарушением фолдинга внутриклеточных белков;	УК -1; ОПК-1;
80.	с выходом кальция из цистерн эндоплазматического	ПК-7; ПК-12
	ретикулума;	
	d активацией белков семейства BCL.	
	Центральным патобиохимическим звеном развития некроза	
	является: а накопление в клетке промежуточных продуктов метаболизма;	УК -1; ОПК-1;
87.	 в истощение запасов АТФ; 	ЛК-1, ОПК-1, ПК-7; ПК-12
	с закисление внутренней среды клетки;	1110 7, 1110 12
	d снижение синтеза белка.	
	Компонентами антиоксидантной системы клетки являются:	
	а глутатион;	VIC 1. OFFIC 1
88.	b белок p53;	УК -1; ОПК-1; ПК-7; ПК-12
	с аскорбиновая кислота;	1110-7, 1110-12
	d пероксид водорода.	
	Сосудистый некроз развивается вследствие:	
	а увеличения притока крови к тканям;	УК -1; ОПК-1;
89.	b тромботической закупорки кровеносного сосуда;	ПК-7; ПК-12
	с сосудорасширяющего действия гистамина;	,
	d повреждением сосудов под действием иммунных комплексов.	

90.	Нарушение кальциевого гомеостаза в ходе развития некроза характеризуется: а повышением содержания кальция в клетке; b увеличением выведения кальция почками; с повышенной секрецией кальцитонина; d снижением работы кальциевых насосов.	УК -1; ОПК-1; ПК-7; ПК-12
91.	Нарушение функции антиоксидантных систем клетки является причиной: а снижения концентрации глутатиона; b повреждения клеточной мембраны; c повышения концентрации кислорода в клетке; d нарушений в структуре ДНК.	УК -1; ОПК-1; ПК-7; ПК-12
92.	Некротический процесс сопровождается: а гибелью единичных клеток; b образованием апоптических телец; с развитием воспалительной реакции; d активацией внутриклеточных гидролитических ферментов.	УК -1; ОПК-1; ПК-7; ПК-12
93.	Последствием нарушений механизмов апоптоза является: а снижение резистентности к воздействию повреждающих факторов; b повышение риска злокачественного перерождения клеток; с накопление в клетке белков дефектных белков; d ускорение гибели жизнеспособных клеток.	УК -1; ОПК-1; ПК-7; ПК-12
94.	Накопление в клетке молочной кислоты является следствием: а нарушения работы дыхательной цепи; b снижения активности лизосомальных ферментов; с преобладания анаэробного гликолиза; d увеличения поступления лактата из внеклеточной среды.	УК -1; ОПК-1; ПК-7; ПК-12
95.	Последствием необратимого повреждения клетки является: а адаптация; b апоптоз; c некроз; d гипертрофия.	УК -1; ОПК-1; ПК-7; ПК-12
96.	К пусковым механизмам апоптоза относят: а образование апоптотических телец; b активацию каспаз; c фрагментацию ДНК; d активацию фагоцитов.	УК -1; ОПК-1; ПК-7; ПК-12
97.	Антиапоптотическими белками являются: а p53; b BCL-2; c BAX; d BAK.	УК -1; ОПК-1; ПК-7; ПК-12

98.	Результатом образования функциональной апоптосомы является: а иницивция фрагмент; b активацию каспазы-9; c выход цитохрома С из митохондрий; d формирование апоптических телец.	УК -1; ОПК-1; ПК-7; ПК-12
99.	В ходе транспорта электронов по дыхательной цепи образуются: а циклический аденозинмонофосфат; b активные формы кислорода; c аденозинтрифосфат; d углекислый газ.	УК -1; ОПК-1; ПК-7; ПК-12
100.	В результате снижения скорости работы ЦПЭ происходит: а разобщение дыхания и фосфорилирования; b накопление в клетке кислорода; с уменьшение интенсивности окислительного фосфорилирования; d развитие ишемии тканей.	УК -1; ОПК-1; ПК-7; ПК-12

Перечень вопросов для собеседования:

№	Вопросы для 2 этапа экзамена (итоговое собеседования по	Проверяемые
п/п	билетам)	компетенции
1.	Основные классы биологических молекул: нуклеотиды,	УК -1; ОПК-1;
1.	аминокислоты, углеводы и липиды.	ПК-7; ПК-12
2	Понятие о биополимерах: нуклеиновые кислоты, белки и	УК -1; ОПК-1;
2.	полисахариды.	ПК-7; ПК-12
3.	Принципы строения и биологические функции нуклеиновых	УК -1; ОПК-1;
٥.	кислот.	ПК-7; ПК-12
4	п с 1 с	УК -1; ОПК-1;
4.	Принципы строения и биологические функции белков.	ПК-7; ПК-12
_	Определение и биологическая роль ферментов.	УК -1; ОПК-1;
5.		ПК-7; ПК-12
6.	Основные типы химических реакций в биологических	УК -1; ОПК-1;
0.	системах.	ПК-7; ПК-12
7.	Метаболические пути. Понятие о метаболизме.	УК -1; ОПК-1;
	Энергетическое обеспечение метаболических процессов.	ПК-7; ПК-12
0	Строение и функции нуклеиновых кислот. Отличия ДНК и	УК -1; ОПК-1;
8.	РНК. Основные матричные биосинтезы.	ПК-7; ПК-12
0	Репликация ДНК: основные принципы матричного биосинтеза.	УК -1; ОПК-1;
9.	Согласованность репликации и клеточного цикла.	ПК-7; ПК-12
10.	Механизмы биосинтеза лидирующей и отстающей цепей ДНК.	УК -1; ОПК-1;
		ПК-7; ПК-12
11	Повреждения структуры ДНК: причины и их биологические	УК -1; ОПК-1;
11.	последствия.	ПК-7; ПК-12

	Репарации ДНК: основные механизмы восстановления	УК -1; ОПК-1;
12.	структуры ДНК. Нарушения систем репарации ДНК и их биомедицинское значение.	ЛК-7; ПК-12
13.	Этапы реализации генетической информации. Понятие о	УК -1; ОПК-1;
13.	транскрипции и трансляции.	ПК-7; ПК-12
14.	Основные виды РНК их функции. Типы РНК-полимераз.	УК -1; ОПК-1; ПК-7; ПК-12
	Биосинтез РНК: стадии процесса. Особенности транскрипции	УК -1; ОПК-1;
15.	у эукариот.	ПК-7; ПК-12
16.	Посттранскрипционные изменения РНК. Альтернативый	УК -1; ОПК-1;
10.	сплайсинг.	ПК-7; ПК-12
17.	Биосинтез белка. Генетический код и его свойства. Функция и	УК -1; ОПК-1;
	особенности строения тРНК. Активация аминокислот. Рибосомы: особенности строения у прокариот и эукариот.	ПК-7; ПК-12 УК -1; ОПК-1;
18.	Активные центры рибосом. Полирибосомы.	ПК-7; ПК-12
1.0		УК -1; ОПК-1;
19.	Особенности экспрессии генов у прокариот и эукариот.	ПК-7; ПК-12
20.	Принципы регуляции экспрессии генов у прокариот. Теория	УК -1; ОПК-1;
20.	«оперона». Лактозный и триптофановый опероны.	ПК-7; ПК-12
21	Уровни регуляции экспрессии генов у эукариот. Упаковка	УК -1; ОПК-1;
21.	генетического материала. Эухроматин и гетерохроматин. Регуляция транскрипции и процессинга РНК.	ПК-7; ПК-12
	Регуляция трансляции и посттрансляционные модификации	УК -1; ОПК-1;
22.	белка. Механизмы индукции и репрессии генной экспрессии.	ПК-7; ПК-12
	Аминокислоты, входящие в состав белков, их строение и	УК -1; ОПК-1;
23.	свойства. Пептиды. Биологическая роль аминокислот и	ПК-7; ПК-12
	пептидов.	
24.	Первичная структура белков. Пептидная связь, ее характеристика. Зависимость биологических свойств белков от	УК -1; ОПК-1;
Z4.	первичной структуры.	ПК-7; ПК-12
	Конформация пептидных цепей в белках (вторичная	
25.	структура). Типы химических связей, участвующих в	УК -1; ОПК-1;
25.	формировании вторичной структуры. Супервторичные	ПК-7; ПК-12
	структуры.	
26.	Принципы классификации белков. Классификация по составу и биологическим функциям, примеры представителей отдельных	УК -1; ОПК-1;
20.	классов.	ПК-7; ПК-12
	Ферменты, определение. Особенности ферментативного	****
27.	катализа. Специфичность действия ферментов, виды.	УК -1; ОПК-1;
	Классификация и номенклатура ферментов, примеры.	ПК-7; ПК-12
	Строение ферментов. Каталитический и регуляторный центры.	
20	Взаимодействие ферментов с лигандами. Механизм действия ферментов. Формирование фермент-субстратного комплекса.	УК -1; ОПК-1;
28.	ферментов. Формирование фермент-суостратного комплекса. Гипотеза «ключ-замок» и гипотеза индуцированного	ПК-7; ПК-12
	соответствия.	
	Принципы строения биологических мембран: образование	VV 1. OUV 1.
29.	липидного бислоя, мозаичная модель. Основные компоненты	УК -1; ОПК-1; ПК-7; ПК-12
	биологических мембран.	1111 /, 1111 12

30.	Функции и свойства биологических мембран.	УК -1; ОПК-1;
	1	ПК-7; ПК-12 УК -1; ОПК-1;
31.	Классификация и биологические функции мембранных белков.	ПК-7; ПК-12
32.	Классификация механизмов транспорта веществ через	УК -1; ОПК-1;
32.	мембраны.	ПК-7; ПК-12
22	Пассивный транспорт: основные механизмы и биологическая	УК -1; ОПК-1;
33.	роль. Осмотическое давление и его значение в поддержании целостности клетки. Физиологические растворы.	ПК-7; ПК-12
34.	Активный транспорт: основные механизмы и примеры белков	УК -1; ОПК-1;
34.	транспортёров.	ПК-7; ПК-12
35.	Экзоцитоз и эндоцитоз: основные механизмы и биологическая	УК -1; ОПК-1; ПК-7; ПК-12
	роль. Рецепторная функция биологических мембран. Классификация	УК -1; ОПК-1;
36.	рецепторов. Принципы передачи гормонального сигнала.	ПК-7; ПК-12
37.	Классификация G-белков. Вторичные посредники.	УК -1; ОПК-1;
37.		ПК-7; ПК-12
38.	Аденилатциклазная система трансдукции сигнала: примеры рецепторов, основные эффекты и биологическая роль.	УК -1; ОПК-1; ПК-7; ПК-12
	Инозитолфосфатная трансдукции сигнала: примеры	УК -1; ОПК-1;
39.	рецепторов, основные эффекты и биологическая роль.	ПК-7; ПК-12
	Каталитические рецепторы. Механизмы трансдукции	УК -1; ОПК-1;
40.	внутриклеточного сигнала и биологические эффекты на	ПК-7; ПК-12
	примере рецептора инсулина.	УК -1; ОПК-1;
41.	Понятие о клеточном цикле. Фазы митоза. Цитокинез.	ПК-7; ПК-12
42.	Структура и организация клеточного ядра. Ядерная оболочка.	УК -1; ОПК-1;
12.	Ядерные поры.	ПК-7; ПК-12
43.	Уровни упаковки ДНК в хромосомах. Ремоделирование хроматина.	УК -1; ОПК-1; ПК-7; ПК-12
	Пространственная организация хромосом в интерфазном ядре.	УК -1; ОПК-1;
44.	Метафазная хромосома. Типы хромосомных перестроек.	ПК-7; ПК-12
	Циклины и циклин-зависимых киназ в контроле клеточного	
45.	цикла: основные комплексы и механизмы действия на разных	УК -1; ОПК-1;
	фазах клеточного цикла. Динамика экспрессии белковциклинов.	ПК-7; ПК-12
	Основные регуляторные белки клеточного цикла:	
46.	протеинкиназы и протеинфосфатазы циклин-зависимых киназ,	УК -1; ОПК-1;
40.	белки-ингибиторы циклин-зависимых киназ, убиквитинлигазы	ПК-7; ПК-12
	и их активаторы.	VIC 1. OFFIC 1
47.	Молекулярные механизмы регуляции S-фазы клеточного цикла. Контроль репликации хромосом. Роль белков когезинов.	УК -1; ОПК-1; ПК-7; ПК-12
40	1	УК -1; ОПК-1;
48.	Теломерные участки хромосом. Роль фермента теломераза.	ПК-7; ПК-12
40	Молекулярные механизмы М-фазы клеточного цикла. Строение	УК -1; ОПК-1;
49.	митотического веретена деления. Типы микротрубочек. Строение центросомы. Механизмы цитокинеза у	ПК-7; ПК-12
	Строение центросомы. Механизмы цитокинеза у	

	млекопитающих.	
50.	Факторы роста и митогены: классификация и механизмы действия. Эпидермальный и трансформирующий факторы роста.	УК -1; ОПК-1; ПК-7; ПК-12
51.	Рецепторы факторов роста: строение и механизмы сигнальной трансдукции.	УК -1; ОПК-1; ПК-7; ПК-12
52.	Роль про- и антиапоптотических белков в регуляции клеточного цикла. Механизмы остановки клеточного цикла в ответ на повреждение.	УК -1; ОПК-1; ПК-7; ПК-12
53.	Молекулярно-генетические механизмы канцерогенеза.	УК -1; ОПК-1; ПК-7; ПК-12
54.	Нарушения систем репарации ДНК в развитии различных заболеваний.	УК -1; ОПК-1; ПК-7; ПК-12
55.	Биологическое значение апоптоза в норме и при патологии.	УК -1; ОПК-1; ПК-7; ПК-12
56.	Сигнальные пути в регуляции клеточного цикла.	УК -1; ОПК-1; ПК-7; ПК-12
57.	Фолдинг белков и его нарушения при нейродегенеративных заболеваниях. Биохимические основы «болезней накопления».	УК -1; ОПК-1; ПК-7; ПК-12
58.	Молекулярные механизмы опухолевой трансформации клеток и метастазирования опухолевых клеток.	УК -1; ОПК-1; ПК-7; ПК-12
59.	Виды повреждений клетки и их основные механизмы.	УК -1; ОПК-1; ПК-7; ПК-12
60.	Некроз и апоптоз: определения и сравнительная характеристика.	УК -1; ОПК-1; ПК-7; ПК-12
61.	Виды запрограммированной гибели клетки. Апоптоз. Биологическое значение.	УК -1; ОПК-1; ПК-7; ПК-12
62.	Морфологические признаки апоптоза. Сравнительная характеристика некроза и апоптоза.	УК -1; ОПК-1; ПК-7; ПК-12
63.	Биохимические механизмы апоптоза: пусковые факторы, роль каспаз, цитохрома с, белка р53.	УК -1; ОПК-1; ПК-7; ПК-12
64.	Фазы апоптоза: классификация белков-регуляторов и их функции. Образование апоптосом.	УК -1; ОПК-1; ПК-7; ПК-12
65.	Нарушения апоптоза. Роль апоптоза в патогенезе опухолевых и нейродегенеративных заболеваний.	УК -1; ОПК-1; ПК-7; ПК-12

В полном объеме фонд оценочных средств по дисциплине доступен в ЭИОС ВолгГМУ по ссылкам:

https://elearning.volgmed.ru/course/view.php?id=7129 https://elearning.volgmed.ru/course/view.php?id=3657

Рассмотрено на заседании кафедры фундаментальной медицины и биологии «26» мая 2023 г., протокол №10

Заведующий кафедрой

А.В. Стрыгин