МОРФОЛОГИЯ

А. В. Смирнов, М. В. Шмидт, Н. Г. Паньшин, В. А. Кузнецова

Волгоградский государственный медицинский университет, Волгоградский медицинский научный центр, НИИ фармакологии, кафедра фармакологии, кафедра патологической анатомии

МОРФОЛОГИЧЕСКИЕ ИЗМЕНЕНИЯ ГИППОКАМПА ПРИ ЭКСПЕРИМЕНТАЛЬНОМ МОДЕЛИРОВАНИИ ДИАБЕТИЧЕСКОЙ ЭНЦЕФАЛОПАТИИ

УДК 615.015:616.379-008.64

В настоящей работе представлены результаты, свидетельствующие о наличии патоморфологических изменений в структурах вентрального и дорсального гиппокампа головного мозга крыс при экспериментальном моделировании стрептозотоцин-индуцированного сахарного диабета.

Ключевые слова: сахарный диабет, диабетическая энцефалопатия, стрептозотоцин.

A. V. Smirnov, M. V. Schmidt, N. G. Panshin, V. A. Kuznetsova

MORPHOLOGICAL CHANGES IN THE HIPPOCAMPUS IN A MODEL OF DIABETIC ENCEPHALOPATHY

The study presents the findings indicating pathological changes in the ventral and dorsal hippocampus in rats with streptozotocin-induced diabetes.

Key words: diabetes mellitus, diabetic encephalopathy, streptozotocin.

Сахарный диабет является одним из наиболее распространенных и тяжелых нарушений обмена веществ, характеризующихся гипергликемией и патологическими изменениями метаболизма липидов, углеводов и белков [1, 3].

Независимо от типа, сахарный диабет приводит к морфологическим изменениям различных структур головного мозга как у людей, так и у животных при экспериментальном моделировании болезни. Данные патоморфологические изменения сопровождаются развитием астроглиоза, снижением синаптической пластичности в структурах гиппокампа [4, 5]. Кроме того, хроническая гипергликемия способствует усилению нейротоксичности путем активации оксидативного стресса и увеличению внеклеточной концентрации глутамата [6].

Несмотря на накопленный материал о патогенном влиянии сахарного диабета 1-го и 2-го типа на центральную нервную систему, включая такие отделы головного мозга как кора, гиппокамп, гипоталамус и мозжечок, чрезвычайный морфологический и клинический полиморфизм диабетической

энцефалопатии требует более глубокого и детального изучения структурных изменений головного мозга на фоне сахарного диабета.

У пациентов с сахарным диабетом наблюдается тенденция к ухудшению памяти и способности к обучению [6].

В связи с этим особую значимость приобретает изучение морфо-функциональных изменений структур гиппокампа.

С одной стороны, гиппокамп является одной из самых уязвимых и чувствительных областей головного мозга, с другой — чрезвычайно важен для декларативного и пространственного обучения и формирования памяти [8].

ЦЕЛЬ РАБОТЫ

Изучить патоморфологические изменения структур вентрального и дорсального гиппокампа при экспериментальном моделировании диабетической энцефалопатии у крыс с длительной гипергликемией, вызванной стрептозотоциновой интоксикацией.

Работа выполнена за счет средств гранта Российского научного фонда (проект № 14-25-00139).

МЕТОДИКА ИССЛЕДОВАНИЯ

Эксперименты проводили на 10 половозрелых беспородных крысах-самцах массой 200—230 г, которых содержали в условиях вивария ВолгГМУ с естественным световым режимом на полнорационной сбалансированной по содержанию питательных веществ диете для лабораторных животных, согласно ГОСТ P50258-92.

Экспериментальный сахарный диабет моделировали путем однократного внутривенного введения стрептозотоцина («Sigma», США), растворенного в 0,1 М цитратном буфере с рН 4,5 в дозе 45 мг/кг [2]. Количественное определение глюкозы в крови проводили на 3-и сутки после введения цитотоксина и далее еженедельно в утреннее время натощак в течение всего срока эксперимента длительностью 12 недель, с использованием глюкометра «Глюкокард» (Россия). В эксперимент брали животных с уровнем глюкозы натощак более 17 ммоль/л.

В случае превышения значения гликемии натощак уровня 20 ммоль/л животным вводили инсулин длительного действия «ЛантусСоло-Стар», Франция (подкожно).

Для проведения гистологического исследования головной мозг фиксировали в течение 24 часов в 10%-м растворе нейтрального забуференного формалина (рН 7,4), обезвоживали и заливали в парафин по общепринятой гистологической методике. На роторном микротоме изготавливали срезы толщиной 3–5 мкм, которые окрашивали гематоксилином и эозином и тионином по методу Ниссля.

Гистологические препараты фотографировали цифровой камерой Axiocam 105 color (Карл Цейс, Германия, 5 мегапикселей) на базе

микроскопа Axiocam plus (Карл Цейс, Германия) с использованием объектива ×10; ×40 и окуляра ×10. При морфологическом исследовании оценивали наличие изменений в пирамидном слое различных полей вентрального и дорсального гиппокампа, а также гранулярном слое зубчатой извилины.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

У животных с экспериментальным сахарным диабетом отмечались следующие морфологические изменения в структурах вентрального гиппокампа. В СА1 поле гиппокампа не было выявлено существенных изменений по сравнению с животными контрольной группы. В САЗ поле гиппокампа у 50 % экспериментальных животных обнаруживались слабые изменения, в целом соответствующие таковым у интактных (контрольных) животных. Однако у половины исследуемых животных выявлялись выраженные морфологические изменения пирамидных нейронов СА2 и САЗ полей правого гиппокампа (в симметричных нейронах контралатерального полушария похожих изменений не обнаруживалось). Повреждение носило тотальный характер на участке располагающегося в проекции бокового желудочка. Нейроны характеризовалось выраженным сморщиванием клеточных тел, гомогенизацией цитоплазмы. Соответственно, снижалась абсолютная и относительная площади перикарионов нейронов пирамидного слоя СА2 и СА3. Пикнотические, резко гиперхромные ядра имели полигональную форму. В некоторых клетках ядерный материал не визуализировался или отмечались признаки кариорексиса (рис. 1).

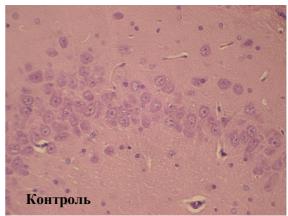
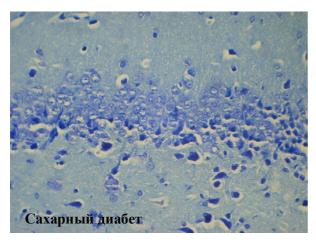


Рис. 1. Сморщенные, нейроны пирамидного слоя вентрального гиппокампа (СА3) с гомогенизацией цитоплазмы и пикнотическими изменениями ядер. Головной мозг крысы. Окраска гематоксилином и эозином. Ув. ×400

В остальных отделах аммонова рога и зубчатой извилины существенных патоморфологических изменений, по сравнению с животными контрольной группы, выявлено не было.

Со стороны сосудов микроциркуляторного русла, существенных патоморфологических изменений выявлено не было. Наблюдающиеся

признаки слабого перицеллюлярного и периваскулярного отека, имели место и у контрольных животных.


Микроскопическое исследование дорсальных отделов гиппокампа продемонстрировало следующие результаты. В САЗ наблюдалось умеренное увеличение количества нейронов,

характеризующихся сморщиванием клеточных тел, гиперхромией и гомогенизацией цитоплазмы перикарионов. Такие клетки приобретали вытянутую извитую форму. При этом форма пикнотических гиперхромных ядер, как правило, соответствовала форме перикарионов. Ядрышки практически не визуализировались. У большинства животных изменения носили нерегулярный, мозаичный характер, только в одном случае наблюдалось значительное сморщивание нейронов САЗ как в правом, так и левом полушариях головного мозга.

При изучении препаратов окрашенных тионином по методу Ниссля, в сморщенных деформированных нейронах отмечалось исчезновение базофилной зернистости. Интенсивная окраска ядра и перикарионов делала невозможным идентификацию клеточных компонентов. В СА1 дорсального гиппокампа изменения

носили менее выраженный характер. В целом морфологическая структура пирамидного слоя соответствовала контрольным животным. В отдельных случаях выявлялись очаговые изменения в виде сморщивания и гиперхромии нервных клеток.

Схожий характер патогистологических изменений наблюдался и в нейронах гранулярного слоя зубчатой извилины. У большинства животных встречались небольшие участки с увеличением удельной плотности сморщенных, гиперхромных нейронов (рис. 2). Только в одном случае у животного с моделируемым сахарным диабетом выявлялись выраженные изменения, вовлекающие большинство нейронов гранулярного слоя. Данные изменения также носили неспецифический характер и выражались в сморщивании и гиперхромии клеточных тел и ядер.

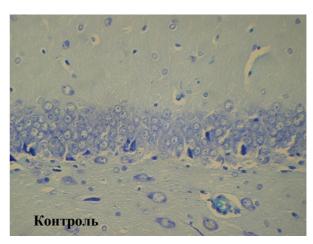


Рис. 2. Увеличение удельной плотности сморщенных, гиперхромных нейронов в гранулярном слое зубчатой извилины. Головной мозг крысы. Окраска тионином по методу Ниссля. Ув. ×400

ЗАКЛЮЧЕНИЕ

Таким образом, при экспериментальном воспроизведении стрептозотоцин-индуцированного сахарного диабета в головном мозге белых крыс выявлялись признаки повреждения и атрофии нейронов различных отделов гиппокампа, свидетельствующие о развитии диабетической энцефалопатии. Полученные результаты согласуются с литературными данными о наличии расстройств обучения и памяти у крыс после 12-недельного экспериментального диабета [7]. Морфологические изменения носили умеренный, очаговый характер и проявлялись преимущественно формированием и увеличением удельной плотности так называемых «темных нейронов». Несмотря на то, что изменения, как правило, носили разрозненный и несимметричный характер в различных полях гиппокампа, в целом можно сделать вывод о развитии более выраженных повреждений в пирамидных нейронах САЗ и СА2 полей вентрального гиппокампа. Однако необходимо отметить, что в единичных случаях мы наблюдали значительные патоморфологические изменения и в САЗ дорсального гиппокампа, а также гранулярном слое зубчатой извилины.

ЛИТЕРАТУРА

- 1. Методические рекомендации по доклиническому изучению пероральных лекарственных средств для лечения сахарного диабета // Руководство по проведению доклинических исследований лекарственных средств / А. А. Спасов и др.; под ред. А. Н. Миронова. М., 2012. Ч. 1. С. 670—684.
- 2. Сахарный диабет. Острые и хронические осложнения / И. И. Дедов, М. В. Шестакова и др.; под ред. И. И. Дедова, М. В. Шестаковой. М.: «МИА», 2011. 480 с.
- 3. Спасов А. А., Смирнов А. В., Соловьева О. А. и др. // Вестник ВолгГМУ. 2015. № 3. С. 36–40.
- 4. Ahmadpour S. H., Haghir H. // J. Morphol. Embryol, 2010. Asian J. Med. Sci. Vol. 2. P. 11–15.
- 5. Biessels G. J., Heide L., Kamal A., et al. // Eur. J. Pharmacol. 2002. Vol. 441. P. 1–14.
- 6. Golalipour M. J., Kaboli S. Kafshgiri, Ghafari S. // Folia Morphol. 2012. Vol. 71, № 2. P. 71–77.
- 7. *Ji-ping Liu, Liang Feng, Ming-hua Zhang, et al. //* Journal of Ethnopharmacology. 2013. Vol. 150. P. 371–381.
- 8. Yao-Wu Liu, Xia Zhu, Liang Zhang, et al. // Pharmacology, Biochemistry and Behavior. 2014. Vol. 117. P. 128–136.