- 4. Терапевтическая стоматология: учебник / Под ред. Е. В. Боровского. – М.: Медицинское информационное агентство, 2011. - 798 с.
- 5. Akamine A., Hashiguchi I., Toriya Y., et al. // Endod. Dent. Traumatol. – 1994. – Vol. 10, № 1. – P. 21–28. 6. *Fristad I., Molven O., Halse A. //* Int. Endod. J. –
- 2004. Vol. 37. P. 12-18.
- 7. Golub L. M., Lee H. M., Ryan M. E., et al. // Adv. Dent. Res. - 1998. - Vol. 12. - P. 12-26.
- 8. Hamachi T., Anan H., Akamine A., et al. // J. Endod. -1995. - Vol. 21. - P. 118-121.
- 9. Harris Dr., Goodrich S., Mohrs K., et al. // J. Immunol. - 2005. - Vol. 175. - P. 7103-7107.
- 10. Hirshberg A., Tsesis I., Metzger Z., et al. // Oral. Radiol. Endod. – 2003. – Vol. 95. – P. 614–620.
- 11. Ingle J., Bakland L., Baumgartner J. Craig. Ingle's Endodontics. - 6 edition. - BC Decker Inc, 2008. -1555 p.
- 12. Kabashima H., Nagata K., Maeda K., et al. // J. Oral. Pathol. Med. 2002. Vol. 31. P. 175–180.
- 13. Kawashima N., Stashenko P. // Arch. Oral. Biol. -1999. - Vol. 44. - P. 55-66.
- 14. Kuo M. L., Lamster I. B., Hasselgren G. // J. Endod. - 1998. - Vol. 24. - P. 636-640.
- 15. Kuo M. L., Lamster I. B., Hassclgren G. // J. Endod. - 1998. - Vol. 24. - P. 598-603.
- 16. Kvist T., Reit C. // J. Endod. 1999. Vol. 25. -P. 814-817.
- 17. Lim G. C., Torabinejad M., Kettering I., et al. // J. Endod. - 1994. - Vol. 20. - P. 225-227.

- 18. Lukic A., Vasilijic S., Majstorovic I., et al. // Int. Endod. J. - 2006. - Vol. 39. - P. 626-636.
- 19. Lukic A., Voivodic D., Majstorovic I., et al. // Oral. Microbiol. Immunol. – 2006. – Vol. 21. – P. 296–300.
- 20. Matsuo T., Nakanishi T., Ebisu S. // Endod. Dent. Trauma. -1995. - Vol. 11. - P. 95-99.
- 21. Metzger Z. // Endod. Dent. Traumatol. 2000. -Vol. 16. - P. 1-8.
- 22. Metzger Z., Berg D., Dotan M. // J. Endod. 1997. Vol. 23. P. 517–521.
- 23. Metzger Z., Klein H., Klein A., et al. // J. Endod. -2002. - Vol. 28. - P. 643-645.
- 24. Noguchi N., Noiri Y., Narimatsu M., et al. // Appl.
- Environ. Microbiol. 2005. Vol. 71. P. 8738–8743. 25. *Piattelli A., Artese L., Rosini S., et al. // J.* Endod. 1991. - Vol. 17. - P. 26-29.
- 26. Shimauchi H., Takayama S., Narikawa-Kiji M., et al. // J. Endod. - 2001. - Vol. 27. - P. 749-752.
- 27. Stashenko P., Teles S. R., D'Souza R. // Crit. Rev. Oral. Biol. Med. - 1998. - Vol. 9. - P. 498-521.
- 28. Stashenko P., Wang C. Y., Tani-Ishii N., et al. //
- Oral. Radiol. Endod. 1994. Vol. 78. P. 494–502. 29. *Tani-Ishii N., Kuchiba K., Osada T., et al.* // J. Endod. - 1995. - Vol. 21. - P. 195-199.
- 30. Tani-Ishii N., Wang C. Y., Stashenko P. // Oral. Microbiol. Immunol. - 1995. - Vol. 10. - P. 213-219.
- 31. Wang C. Y., Stashenko P. // J. Endod. 1993. -Vol. 19. – P. 107–111.
- 32. Wang C. Y., Stashenko P. // J. Dent. Res. 1991. Vol. 70. P. 1362–1366.

Н. Г. Краюшкина¹, Л. И. Александрова², В. Л. Загребин¹, А. И. Перепелкин², М. А. Пикалов²

Волгоградский государственный медицинский университет, ¹кафедра гистологии, эмбриологии, цитологии; ²кафедра анатомии человека

БИОТРОПНЫЕ ЭФФЕКТЫ ЭЛЕКТРОМАГНИТНЫХ ИЗЛУЧЕНИЙ (ЭМИ)

УДК 611.9:611.42-616:612.017.1

В статье приведен литературный обзор современных данных о теоретических и прикладных аспектах, детерминирующих необходимость изучения биотропных эффектов ЭМИ. Подчеркнута актуальность проблемы, определяемая, прежде всего, повреждающим эффектом ЭМИ, зависящем от постоянно нарастающего «электромагнитного смога».

Ключевые слова: электромагнитное излучение, биотропный эффект.

N. G. Kraushkina, L. I. Alexandrova, V. L. Zagrebin, A. I. Perepelkin, M. A. Pikalov

BIOTROPIC EFFECTS OF ELECTROMAGNETIC RADIATION (EMR)

The article gives an overview of the current findings on the theoretical and applied aspects necessitating a study of biotropic effects of EMR. It highlights the significance of the problem which primarily consists in the damaging effect of EMR caused by increasing «electromagnetic smog».

Keywords: electromagnetic radiation, biotropic effect.

Библиографию работ, посвященных изучению взаимодействия ЭМИ с биологическими объектами, едва ли можно считать легко обозримой [8, 9, 13-20].

Интерес к проблеме определяется рядом факторов. Во-первых, наличием естественных электромагнитных полей (ЭМП), представляющих собой слагаемое излучений Солнца, атмосферы и Земли, которые являются, наряду с воздухом и водой, одними из биосферных факторов и, следовательно, важнейшим условием существования всего живого на Земле.

Во-вторых, биологические объекты обладают собственными электромагнитными полями,

наличие которых сопровождает жизнедеятельность клеток и межклеточные связи [12].

Очевидно, условием существования биологических объектов и является взаимодействие внутренних и окружающих природных ЭМП, эволюционно детерминирующих адаптацию к ним всего живого.

Можно предполагать, что на основе такого рода «естественного» взаимодействия эндогенных и внешних ЭМП и разрабатываются принципы применения их в медицине.

Изучение терапевтического эффекта применения ЭМП имеет важное практическое значение и поэтому требует особого обсуждения.

Значительная часть нозологических единиц МКБ-10 рассмотрены с позиций возможного использования лечебного эффекта ЭМП [3].

Подобный эффект проявляется улучшением микроциркуляции в органах и тканях, стимуляцией регенераторных процессов, возможностями более эффективного применения химиопрепаратов, купированием воспалительных и отечных явлений. Поэтому ЭМП определенных характеристик нашли применение в различных областях медицины – в педиатрической практике, ортопедии, дерматовенерологии, в урологической практике, гинекологической клинике, при лечении язвенной болезни желудка и двенадцатиперстной кишки, в онкологической практике, при лечении ишемической болезни сердца, при лечении больных с сочетанной патологией, как средство профилактики инфекционных заболеваний в организованном коллективе. Установлено положительное воздействие ЭМИ на систему гомеостаза, а также его иммуномодулирующий эффект [7].

Таким образом, заслуживает особого внимания изучение благоприятного действия ЭМИ

определенных характеристик на биологические объекты и течение некоторых заболеваний.

Вместе с тем, в современной литературе пристальное внимание уделяется также неблагоприятному воздействию ЭМП ряда физических параметров на организм человека и животных. В значительной мере это касается ЭМИ, сопряженных с эксплуатацией некоторых промышленных и бытовых объектов, являющихся источниками ЭМИ и, побуждающих рассматривать искусственные ЭМП важным негативным экологическим фактором антропогенной природы.

Поэтому в паспорте специальности «анатомия человека» в качестве одной из областей исследования выделено «Выявление действия различных экологических влияний, включающих неблагоприятные на развитие и становление тела человека, его отдельных органов, их структур, систем, аппаратов», а в формуле специальности указано на широкое использование экспериментально-анатомических исследований, «...когда моделирование разнообразных средовых и других воздействий в определенной степени может быть перенесено на человека».

Не анализируя возможные механизмы воздействия ЭМИ на биологические объекты, следует отметить, что неблагоприятное влияние его связывают с рядом факторов, к которым относят источники ЭМП, экспозицию, длину и частоту волн различных видов излучения, их интенсивность, локализацию воздействия, электрические свойства тканей [1, 12].

В связи со сказанным об ЭМИ и их взаимодействиях с биологическими объектами, представляется целесообразным привести общепринятую классификацию электромагнитных волн по волновому и частотному диапазонам [11] (см. табл.).

Шкала электромагнитных волн по частотному и волновому диапазонам (Нефёдов Е. И. с соавт., 2005)

Наименование волн	Диапазон волн	Диапазон частот	Устаревшие (внерегламентные) термины
Декамегаметровые	1051011 км	330 Гц	
Мегаметровые	104ЛОЗ км	30300 Гц	
Гектокилометровые	103102 км	3003000 Гц	
Мириаметровые	10010 км	330 кГц	Сверхдлинные
Километровые	101 км	30300 кГц	Длинные
Гектометровые	1000100 м	3003000 кГц	Средние (СВ)
Декаметровые	100Юм	330 МГц	Короткие (КВ)
Метровые	101 м	30300 МГц	
Дециметровые	100 10 см	3003000 МГц	Ультра
Сантиметровые	101 см	330ГГЦ	Короткие
Миллиметровые	101 мм	30300 ГГц	(УКВ)
Децимиллиметровые	10,1 мм	3003000 ГГц	

Радиоволновой диапазон (сверхдлинные, длинные, средние и короткие волны) применяются

в радиотехнических устройствах (телевидение, радио), дециметровые, миллиметровые волны

(сверхвысокочастотный диапазон) используют в радиолокации, мобильных телефонах [11].

К основным источникам ЭМП, генерируемых промышленными и бытовыми объектами, являющимися возможными дестабилизирующими экологическими факторами для здоровья. в настоящее время относят различного вида электротранспорт (трамваи, троллейбусы, поезда, метрополитены и др.), линии электропередач, электропроводку внутри жилых помещений, включая линии телекоммуникаций, бытовую электротехнику (электрические плиты, электроволновые печи, телевизоры, стиральные машины, электродрели, утюги, кофеварки), телеи радиостанции, спутниковую и сотовую связь (как в виде базовых станций, так и мобильных радиотелефонов), радары и персональные компьютеры [10].

Следует также отметить, что если несколько десятилетий тому назад основными источниками электромагнитных полей являлись, в основном, промышленные объекты [1], то в последние годы наибольшее распространение приобретают бытовые источники ЭМИ и, прежде всего, сотовая радиосвязь и, особенно, персональные компьютеры [10].

Влияние ЭМИ персональных компьютеров на организм человека даже априорно не может рассматриваться безобидным [21].

Не рассматривая многочисленных аспектов взаимодействия пользователя и компьютера, многие из которых в качестве отрицательного результата имеют влияние на опорно-двигательный аппарат, сердечно-сосудистую систему (связанное с длительным систематическим напряжением), орган зрения, психоэмоциональную сферу, необходимо принять во внимание компьютер, как наиболее популярный и, на сегодняшний день самый опасный, источник ЭМИ, который вносит серьезную лепту в повышение уровня ЭМП искусственного происхождения, нарушая пределы адаптационных способностей организма.

Завершая краткое перечисление основных источников искусственных ЭМП, с действием которых связана опасность их для здоровья человека, нельзя не упомянуть об электромагнитных полях «экзотического» происхождения, описываемых в литературе. Авторы упоминают об ЭМП в качестве волнового оружия, включающего генераторы коротковолнового и СВЧизлучения, и рассматриваемые как средства экстрасенсорики и зомбирования [11].

Среди волнового оружия выделяют электромагнитное, это генераторы коротковолнового и СВЧ-излучения, одним из поражающих эффектов которого является массовое воздействие на психику человека. К таким коротковолновым генераторам электромагнитного воздействия относится, в частности, американский «Проект HAARP» (High-frequency Active Auroral Research Program).

По мнению Е. И. Нефёдова с соавт., «...работа установки НААRP основана на явлении возбуждения в проводящей среде ионосферы потоков энергии продольных ЭМВ, возникающих в результате электрической поляризации под воздействием мощного высокочастотного излучения». Целью конструирования таких генераторов является воздействие на личный состав войск и населения противника для создания у человека патологических психических состояний.

Под психотронным, психофизическим или пси-оружием в литературе описывают современные информационно-волновые технологии, обеспечивающие «...насильственное внедрение чужеродной (для принимающего его) информации посредством направленного электромагнитного излучения». Авторы указывают, что разработки и применение психотронного оружия носят характер сведений «закрытого типа», получить их лишь можно косвенно из СМИ, бесспорно лишь одно, данные ЭМИ «...составляют содержание большого пласта нынешней жизни общества и отдельных членов» [11].

В качестве разновидности психотроники, использующей псигенераторы ЭМИ СВЧ, в настоящее время рассматривают зомбирование, при котором в качестве определенного объекта внедрения информации, оказывается специально избранный индивидуум.

Из сказанного о взаимодействии ЭМП с биологическими объектами можно заключить следующее: «из четырех фундаментальных взаимодействий в природе (сильного, электромагнитного, слабого и гравитационного, соотносящихся как $10^{47}:10^{46}:10^{40}:10^5$) только электромагнитные пронизывают весь материальный мир, то есть воздействуют глобально, нелокально и далее, вплоть до молекулярного уровня» [11].

Существует три группы источников электромагнитных полей. Это природные (небиологические) источники; поля, генерируемые биологическими объектами; искусственные ЭМП, являющиеся антропогенным экологическим фактором. Первые являются необходимым биосферным условием существования живого, эволюционно «тесно» связанного с ними. Микроорганизмы и далее другие живые системы являются генераторами продольных электромагнитных волн, образованием которых сопровождается их жизнедеятельность, очевидно для обеспечения взаимодействия собственных электромагнитных полей с внешними. При этом электромагнитные поля сверхвысокой частоты генерируются прежде всего в «силовых станциях» живых клеток - митохондриях. «Известно, что наше тело заряжено отрицательно, а это означает, что все клетки нашего организма, без исключения, наэлектризованы, правда, одни в большей степени, другие – в меньшей» [11].

Из всего изложенного следует, что актуальность в настоящее время приобретает необходимость изучения именно повреждающего эффекта ЭМП, сопряженных с эксплуатацией постоянно увеличивающегося числа промышленных и бытовых объектов, которые являются источниками ЭМИ антропогенной природы [2, 4–6].

ЛИТЕРАТУРА

- 1. Александрова Л. И., Краюшкина Н. Г., Загребин В. Л. и др. // Вестник ВолгГМУ. 2013. № 2(46). С. 32–36.
- 2. Антонов В. А., Сидорова А. Э., Яковенко Л. В. // Экологическое урбанизирование территорий. -2007. № 1. С. 25-34.
- 3. Бецкий О. В., Кислов В. В., Лебедева Н. Н. Миллиметровые волны и живые системы. М.: САЙНС-ПРЕСС, 2004. 272 с.
- 4. Глебов В. В., Родионова О. М. // Биополевые взаимодействия и медицинские технологии: тр. Междунар. конф., Москва (16–18 апреля, 2008). М.: Моск. НТОРЭС им. А. С. Попова, 2008. С. 98–102.
- 5. Гудина М. В. Гигиеническое значение электромагнитного фактора современной урбанизированной среды: автореф. дис. ... канд. мед. наук. Оренбург, 2008. 23 с.
- 6. Евсеев И. С., Чупрова А. В. // Молодежь и наука: итоги и перспективы: матер. межрегион. науч.-практич. конф. студентов и мол. ученых с междунар. участием. Саратов: Изд-во Сарат. гос. мед. ун-та, 2008. С. 71–72.
- 7. Киричук В. Ф. Характеристика изменений функциональной активности тромбоцитов больных нестабильной стенокардией под влиянием ЭМИ миллиметрового диапазона в условиях in vitro / В. Ф. Киричук, М. В. Волин, С. С. Паршина, Н. В. Старостина // Миллиметровые волны в биологии и медицине: 12-й Рос. симпоз. с междунар. участием: сб. докл. М.: ИРЭ РАН, 2000. С. 99–101.

- 8. Краюшкина Н. Г., Александрова Л. И., Загребин В. Л. и др. // Вестник ВолгГМУ. 2012. № 3(43). С. 104–107.
- 9. Краюшкина Н. Г., Александрова Л. И., Загребин В. Л. И др. // Вестник ВолгГМУ. 2013. № 3(47). С. 81–84.
- 10. *Маньков В. Д.* Обеспечение безопасности при работе с ПЭВМ. СПб.: Политехника, 2004. 277 с.
- 11. Нефёдов Е. И., Субботина Т. И., Яшин А. А. Взаимодействие физических полей с биологическими объектами. Тула: изд-во ТулГУ, 2005. 344 с.
- 12. Полина Ю. В. Влияние различных частотных режимов низкоинтенсивного электромагнитного излучения и стресса на морфофункциональное состояние надпочечников (экспериментальное исследование): автореф. дис. ... канд. мед. наук. Волгоград, 2009. 20 с.
- 13. *Bagby T. R., Duan S., Cai S., et al.* // Eur. J. Pharm. Sci. 2012. Vol. 47(1). P. 287–294.
- 14. Bromley S. K., Yan S., Tomura M., et al. // J. Immunol. 2013. Vol. 190(3). P. 970–976.
- 15. Buga D. A., Ermolaev E. V., Miagkov A. P., et al. // Klin. Khir. 2012. Vol. 9. P. 42–44.
- 16. Dhabnar F. S., Saul A. N., Holmes T. H., et al. // PLoS One. 2012. Vol. 7(4). P. 33–69.
- 17. *Halliday G. M., Damian D. L., Rana S., et al.* // J. Dermatol. Sci. 2012 . Vol. 66(3). P. 176–182
- 18. *Ng R. L., Scott N. M., Strickland D. H., et al.* // J. Immunol. 2013. Vol. 190(11). P. 5471–5484.
- 19. *Nunez M. J., Balboa J., Rodrigo E., et al.* // Neurosci. Lett. – 2006. – Vol. 396. – № 3. – P. 247–251.
- 20. Sanuki N., Takeda A., Amemiya A., et al. // Clin. Breast. Cancer. 2013. Vol. 13(1). P. 69–76.
- 21. СанПиН 2.2.2/2.4.1340-03. Гигиенические требования к персональным электронно-вычислительным машинам и организации работы. СПб.: ДЕАН, 2003. 29 с. (Здравоохранение России).