ФАРМАКОЛОГИЯ. ТОКСИКОЛОГИЯ

А. А. Озеров, М. С. Новиков, А. И. Луганченко, Т. Хартман, Р. У. Букхайт

Волгоградский государственный медицинский университет, кафедра фармацевтической и токсикологической химии, ImQuest BioSciences, Inc., Maryland, USA

НОВЫЕ N-[2-(БЕНЗОИЛФЕНОКСИ)ЭТИЛ]ПРОИЗВОДНЫЕ НУКЛЕИНОВЫХ ОСНОВАНИЙ — СИНТЕЗ И АНТИ-ВИЧ-1 АКТИВНОСТЬ IN VITRO

УДК 615.3: 547.854.4

Алкилированием триметилсилилпроизводных пиримидиновых оснований изомерными 1-бром-2-(бензоилфенокси) этанами синтезированы новые производные бензофенона. Орто-производные урацила и тимина продемонстрировали высокую анти-ВИЧ-1 активность *in vitro* с величиной EC_{50} 0,030 и 0,009 μ M, соответственно. Мета- и пара-изомеры были полностью неактивны.

Ключевые слова: анти-ВИЧ-1 активность, пиримидин, бензофенон.

A. A. Ozerov, M. S. Novikov, A. I. Luganchenko, T. Hartman, R. W. Buckheit

NOVEL N-[2-(BENZOYLPHENOXY)ETHYL] NUCLEIC BASES DERIVATIVES — SYNTHESIS AND ANTI-HIV-1 ACTIVITY IN VITRO

New benzophenone derivatives of pyrimidine nucleic bases have been synthesized by alkylation of their trimethylsilyl derivatives with isomeric 1-bromo-2-(benzoylphenoxy)ethanes. *Ortho*-derivatives of uracil and thymine demonstrated a high antiviral activity *in vitro* with EC $_{50}$ value of 0,030 and 0,009 μ M, respectively. *Meta*- and *para*-isomers were totally inactive.

Key words: anti-HIV-1 activity, pyrimidine, benzophenone.

Ненуклеозидные ингибиторы обратной транскриптазы (ОТ) ВИЧ-1 пиримидиновой природы представляют собой наиболее перспективный класс современных лекарственных средств комплексной терапии ВИЧ-1 инфекции [2]. Среди соединений, продемонстрировавших высокий уровень противовирусной активности, следует выделить производные бензофенона, содержащие этот двуядерный ароматический фрагмент на конце ациклической цепи в N¹-замещенных урацилах. Ранее нами были синтезированы производные 1-[2-(2-бензоилфенокси)этил]урацила, содержащие разнообразные заместители в бензофеноновом фрагменте. Некоторые из них оказались эффективными ингибиторами ОТ ВИЧ-1 и подавляли репродукцию различных штаммов виру-

са *in vitro* в наномолярных концентрациях [6]. Однако родоначальная структура 1-[2-(2-бензоилфенокси)этил]урацила, не содержащая каких-либо заместителей во фрагментах урацила и бензофенона, нами ранее получена не была. Кроме того, до сих пор остается не до конца ясным характер влияния природы нуклеинового основания и типа замещения в бензофеноновом фрагменте (орто-, мета- или пара-) на противовирусные свойства соединений данного класса. Решению этих актуальных вопросов и посвящена настоящая работа.

ЦЕЛЬ РАБОТЫ

Синтез и исследование анти-ВИЧ-1 активности *in vitro* новых производных нуклеиновых основа-

ний, содержащих фрагменты бензофенона, отличающихся характером их присоединения к ациклической цепи.

МЕТОДИКА ИССЛЕДОВАНИЯ

Спектры ЯМР 1 Н и 13 С регистрировали на спектрометре Bruker AMXIII-400 в растворе диметилсульфоксида- D_6 , внутренний стандарт — ТМС. Интерпретацию спектров осуществляли с помощью лицензионной программы ACD/HNMR Predictor Pro 3.0 фирмы Advanced Chemistry Development (Канада). ТСХ выполняли на пластинах Sorbfil, элюент — 2-пропанол, проявление в парах иода. Температуры плавления измерены в стеклянных капиллярах на приборе MelTemp 3.0 (Laboratory Devices Inc., США).

Исследование анти-ВИЧ-1 активности *in vitro* проводили в культуре CEM-SS-клеток, которые суспендировали в культуральной среде в количестве 10^5 клеток/мл и инфицировали ВИЧ-1 (штамм HTLV-III $_{\rm B}$) при мультипликации инфекции, равной 0,2. Немедленно после инфицирования вирусом вносили растворы, содержащие различные концентрации исследуемого вещества в ДМСО, и инкубировали в течение 4 сут. при температуре 37 °C. Число живых клеток устанавливали по окончании инкубации при помощи бромида 3-(4,5-диметилтиазол-2-ил)-2,5-дифенилтетразолия, при этом определяли концентрацию вещества, которая на 50% защищала CEM-SS-клетки от цитопатического эффекта ВИЧ-1 (EC $_{50}$).

Цитотоксичность соединений изучали параллельно в неинфицированных культурах клеток, при этом определяли концентрацию вещества, которая на 50% уменьшала количество живых CEM-SS-клеток (${\rm CC}_{50}$). Расчетным путем определяли индекс селективности, являющийся отношением цитотоксической концентрации к ингибиторной концентрации: SI = ${\rm CC}_{50}$ / ${\rm EC}_{50}$ [4].

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

Синтез новых соединений был осуществлен, исходя из соответствующих изомеров оксибензойных кислот (салициловой, мета- и пара-оксибензойной), которые реакцией с хлористым тионилом превращали сначала в хлорангидриды, а затем по реакции Фриделя-Крафтса в орто-, мета- и пара-оксибензофеноны. Кипячение последних с 1,2дибромэтаном в безводном ацетоне в присутствии карбоната калия привело к 2-бромэтиловым эфирам, которыми по разработанному нами ранее методу [1] алкилировали триметилсилилпроизводные пиримидиновых оснований — урацила, тимина и цитозина, а также калиевую соль аденина, получаемую in situ из аденина-основания и карбоната калия в среде безводного диметилформамида по известной методике (рис.) [3].

Выход и физико-химические свойства полученных соединений представлены в табл. 1.

Рис. Синтез N-[2-(бензоилфенокси) этил] производных нуклеиновых оснований

ТАБЛИЦА 1 Свойства синтезированных соединений

Соединение	Х	R	Тип замещения	Выход, %	Брутто-формула	Т. пл., °С	R_f
I	0	Н	орто	57	C ₁₉ H ₁₆ N ₂ O ₄	157,0—159,5	0,67
II	0	Н	мета	59	C ₁₉ H ₁₆ N ₂ O ₄	209,5—212,0	0,60
III	0	Н	пара	65	C ₁₉ H ₁₆ N ₂ O ₄	199,0—201,5	0,52
IV	0	CH₃	орто	52	C ₂₀ H ₁₈ N ₂ O ₄	178—180	0,71
V	NH	Н	орто	46	C ₁₉ H ₁₇ N ₃ O ₃	214—217	0,30
VI	_	_	орто	65	C ₂₀ H ₁₇ N ₅ O ₂	199—201	0,25

Исследование противовирусных свойств синтезированных соединений в отношении дикого штамма ВИЧ-1 показало, что родоначальное соединение -1-[2-(2-бензоилфенокси)этил]урацил (I), не имеющее никаких заместителей в ароматических ядрах, тем не менее обладает высокой противовирусной активностью и эффективно защищает Т-лимфоциты от цитопатического действия ВИЧ-1. Величина ингибиторной концентрации этого вещества составляет $EC_{50} = 0,030 \, \mu M$ при отсутствии цитотоксических свойств во всем изученном диапазоне концентраций (табл. 2). По своему противовирусному действию это вещество более чем в 2 раза превосходит невирапин (EC₅₀ = 0,075 μ M [6]) и мало уступает самым активным из синтезированных нами ранее замещенных аналогов [6]. Изменение характера замещения во фрагменте бензофенона с орто- на метаили пара-приводит к полному исчезновению противовирусных свойств и появлению заметной цитотоксичности (соединения ІІ и ІІІ). Таким образом, наличие ортотипа замещения во фрагменте бензофенона является наиболее критичным фактором, определяющим саму способность вещества подавлять репродукцию ВИЧ-1.

ТАБЛИЦА 2
Противовирусная активность синтезированных соединений

Соеди- нение	Ингибиторная концентрация EC_{50} , μM	Цитотокси- ческая концентрация СС ₅₀ , µМ	Индекс селектив- ности EC ₅₀ / EC ₅₀
I	0,030	> 100	> 3333
ll l	> 100	73,1	< 1
III	> 100	79,2	< 1
IV	0,009	> 100	> 11111
V	> 100	> 100	< 1
VI	0,670	> 100	> 149

Замена нуклеинового основания в 1-[2-(2-бензо-илфенокси)этил]урациле (I) на цитозин (соединение V) или аденин (соединение VI) приводит к исчезновению или значительному ослаблению противовирусной активности. В противоположность этому, тиминовый аналог (соединение IV) продемонстрировал еще более выраженные противовирусные свойства с величиной $EC_{50} = 0,009 \, \mu M$. Это дает основание полагать, что введение и других заместителей в положение C^5 пиримидиновой системы базовой молекулы 1-[2-(2-бензоилфенокси)этил]урацила (I) может привести к получению высокоактивных соединений.

ЗАКЛЮЧЕНИЕ

Таким образом, нами установлено, что в ряду пиримидиновых производных бензофенона наиболее важными факторами, определяющими наличие высокой анти-ВИЧ-1 активности, являются наличие ортозамещения во фрагменте бензофенона и карбонильного атома кислорода в положении C⁴ пиримидиновой системы (урацил или тимин). При этом введение дополнительного заместителя в положение С⁵ урацила приводит к многократному усилению противовирусных свойств. Результаты исследований, в сочетании с полученными нами ранее данными о характере влияния различных заместителей в ароматических ядрах бензофенона на уровень эффективной концентрации in vitro и способность веществ данного ряда ингибировать ОТ ВИЧ-1, могут быть использованы для дальнейшего направленного синтеза перспективных анти-ВИЧ-1 агентов пиримидиновой природы.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

1-[2-(2-Бензоилфенокси)этил]урацил (I).

(A) Хлорангидрид салициловой кислоты. К 20,0 мл (0,275 моль) тионилхлорида добавляют 1,0 мл (0,013 моль) диметилформамида и при интенсивном перемешивании при температуре 5—10 °C порциями в течение 1 ч вносят 25,0 г (0,156 моль) тонкоизмельченного безводного салицилата натрия. Реакционную массу выдерживают в течение 1 сут. при комнатной температуре, избыток тионилхлорида отгоняют в вакууме водоструйного насоса при температуре бани не выше 60 °C, к остатку добавляют 200 мл н-гексана, фильтруют, фильтрат упаривают в вакууме при температуре не выше 60 °C и получают 19,5 г хлорангидрида салициловой кислоты в виде светло-желтой подвижной жидкости, выход 80 %.

(Б) 2-Оксибензофенон. В трехгорлый реактор, снабженный обратным холодильником, термометром, капельной воронкой и эффективной мешалкой, помещают 100 мл (1,125 моль) бензола, 20,0 г (0,150 моль) безводного хлорида алюминия и при интенсивном перемешивании при температуре не выше 25 °С добавляют в течение 30 мин раствор 10,0 г (0,064 моль) хлорангидрида салициловой кислоты в 25 мл бензола. Реакционную массу перемешивают при температуре 55—60 °С в течение 2 ч, охлаждают до комнатной температуры и выливают при перемешивании в смесь 250 г воды со льдом. Добавляют

100 мл хлороформа, органический слой отделяют, промывают 5%-м раствором карбоната натрия, водой, сушат сульфатом магния, фильтруют и упаривают на кипящей водяной бане в вакууме водоструйного насоса. Остаток кристаллизуют из смеси н-гексан — диэтиловый эфир (9:1) и получают 9,9 г 2-оксибензофенона, Т. пл. 38—39 °С (Т. пл. 38—40 °С [5]), выход 78 %.

(В) 1-Бром-2-(2-бензоилфенокси)этан. Смесь 7,5 г (0,038 моль) 2-оксибензофенона, 15,0 мл (0,174 моль) 1,2-дибромэтана, 7,7 г (0,054 моль) безводного карбоната калия, 0,5 г (0,001 моль) дибензо-18-краун-6 и 150 мл безводного ацетона кипятят в течение 1 сут., фильтруют и упаривают на кипящей водяной бане в вакууме водоструйного насоса. Остаток растворяют в 100 мл хлороформа, промывают 5%-м раствором едкого натра, водой, 5%-м раствором хлористоводородной кислоты, водой, сушат сульфатом магния, фильтруют и упаривают на кипящей водяной бане в вакууме водоструйного насоса. Получают 9,8 г 1-бром-2-(2-бензоилфенокси)этана в виде светло-желтой вязкой жидкости, выход 85 %.

Спектр ЯМР 1 H, δ , м.д.: 3,83 т (2 H, 4 Гц, CH $_2$ -Br); 4,42 т (2 H, 4 Гц, CH $_2$ -N); 7,06-7,70 м (9 H, арил).

(Г) 1-[2-(2-Бензоилфенокси)этил]урацил. 2,0 г (0,018 моль) урацила, 25 мл (0,120 моль) гексаметилдисилазана и 0,25 г (0,005 моль) хлорида аммония кипятят с защитой от влаги воздуха до полного растворения осадка (4 ч), избыток гексаметилдисилазана отгоняют на кипящей водяной бане при остаточном давлении не менее 10 мм рт. ст., к остатку добавляют 3.0 г (0.010 моль) 1-бром-2-(2-бензоилфенокси) этана и нагревают при периодическом перемешивании при температуре 175—180 °C в течение 4 ч. Реакционную массу охлаждают, растворяют в 25 мл этилацетата, добавляют 25 мл 2-пропанола, через 30 мин выделившийся осадок отфильтровывают и фильтрат упаривают в вакууме. Остаток растворяют в 50 мл хлороформа, фильтруют, фильтрат упаривают в вакууме, остаток кристаллизуют из 50 мл 2-пропанола и получают 1,9 г 1-[2-(2-бензоилфенокси)этил]урацила, Т. пл. 157— 159,5 °С, выход 57%.

Спектр ЯМР 1 Н, δ , м.д.: 3,76 т (2 H, 5 Гц, CH $_2$ -N); 4,15 т (2 H, 5 Гц, CH $_2$ -O); 5,18 д (1 H, 8 Гц, H 5); 6,74 д (1 H, 8 Гц, H 6); 7,06-7,71 м (9 H, арил); 11,13 с (1 H, NH)

Спектр ЯМР 13 С, δ , м.д.: 47,09; 65,80; 100,48; 112,83; 121,19; 128,59; 129,21; 132,12; 133,45; 137,09; 145,39; 150,73; 155,73; 163,53; 195,53.

Соединения **II-VI** получают аналогично.

1-[2-(3-Бензоилфенокси)этил]урацил (II).

Спектр ЯМР 1 Н, 8 м.д.: 4,08 т (2 H, 5 Гц, CH $_{2}$ -O); 4,25 т (2 H, 5 Гц, CH $_{2}$ -N); 5,56 д (1 H, 6,5 Гц, H 5); 7,25-7,72 м (10 H, арил, H 6); 11,32 с (1 H, NH).

Спектр ЯМР 13 С, δ , м.д.: 50,28; 69,00; 104,07; 118,41; 122,29; 125,94; 131,92; 132,96; 136,17; 140,31; 149,63; 154,36; 161,36; 167,11; 198,81.

1-[2-(4-Бензоилфенокси)этил]урацил (III).

Спектр ЯМР 1 H, δ , м.д.: 4,02 т (2 H, 5 Гц, CH $_2$ -N); 4,21 т (2 H, 5 Гц, CH $_2$ -O); 5,5 дд (1 H, 8 Гц, 8 Гц, H 5); 6,99 -7,62 м (10 H, арил, H 6); 11,28 с (1 H, NH).

Спектр ЯМР 13 С, δ , м.д.: 42,30; 63,70; 97,60; 105,12; 114,40; 128,70; 129,78; 129,60; 132,50; 137,80; 151,40; 153,80; 160,40; 162,60; 196,10.

1-[2-(2-Бензоилфенокси)этил]тимин (IV).

Спектр ЯМР 1 H, δ , м.д.: 1,57 c (3 H, CH $_3$): 3,75 т (2 H, 5 Гц, CH $_2$ -N); 4,15 т (2 H, 5 Гц, CH $_2$ -O); 6,79 c (1 H, H 6); 7,06-7,69 м (9 H, арил); 11,20 c (1 H, NH).

Спектр ЯМР 13 С, ?, м.д.: 11,90; 46,84; 65,84; 107,98; 112,91; 121,10; 128,55; 129,17; 132,09; 133,40; 141,50; 150,72; 155,45; 164,13; 195,36.

1-[2-(2-Бензоилфенокси)этил]цитозин (V).

Спектр ЯМР 1 Н, δ , м.д.: 3,72 т (2 H, 7 Гц, CH $_2$ -N); 4,07 т (2 H, 7 Гц, CH $_2$ -O); 7,09-7,76 м (13 H, арил, H 5 , H 6 , NH $_2$).

Спектр ЯМР 13 С, δ , м.д.: 48,20; 65,30; 93,19; 113,02; 121,31; 132,07; 133,55; 136,84; 146,49; 148,40; 149,67; 155,22; 161,28; 195,47.

9-[2-(2-Бензоилфенокси)этил]аденин (VI).

Спектр ЯМР 1 Н, δ , м.д.: 4,15 т (2 H, 5 Гц, CH $_{2}$ -N); 4,25 т (2 H, 5 Гц, CH $_{2}$ -O); 7,01-7,56 м (11 H, арил, H 3 , H 8); 8,02 с (2 H, NH $_{2}$).

Спектр ЯМР ¹³С, δ, м.д.: 40,20; 65,50; 112,30; 125,22; 127,4; 128,07; 130,30; 132,38; 133,47; 138,78; 139,20; 140,17; 150,30; 156,23; 157,67; 192,34.

ЛИТЕРАТУРА

- 1. Новиков М. С., Озеров А. А. // Химия гетероциклич. соед. 2005. Вып. 7. С. 1071—1075.
- 2. Озеров А. А., Новиков М. С., Тимофеева Ю. А. и др. // Вестник ВолгГМУ. 2012. № 3. С. 10—17.
- 3. Петров В. И., Озеров А. А., Новиков М. С. и др. // Химия гетероциклич. соед. — 2004. — Вып. 1. — С. 35—42.
- 4. Buckheit R. W., White E. L., Fliakas-Boltz V., et al. // Antimicrob. Agents Chemother. 1999. Vol. 43. P. 1827—1834.
- 5. *Martin R*. Hydroxybenzophenones. London: Springer, 2011. 2913 p.
- 6. Novikov M. S., Ivanova O. N., Ivanov A. V., et al. // Bioorg. Med. Chem. 2011. Vol. 19. P. 5794—5902.