Г. Л. Снигур, А. В. Смирнов, М. В. Шмидт, М. Я. Почепцов, М. П. Воронкова

Волгоградский государственный медицинский университет, кафедра патологической анатомии, кафедра фармакологии, Волгоградский медицинский научный центр, лаборатория морфологии и иммуногистохимии

СРАВНИТЕЛЬНЫЕ АСПЕКТЫ УЛЬТРАСТРУКТУРНЫХ ИЗМЕНЕНИЙ ИНСУЛОЦИТОВ ПАНКРЕАТИЧЕСКИХ ОСТРОВКОВ ПРИ ЭКСПЕРИМЕНТАЛЬНОМ САХАРНОМ ДИАБЕТЕ

УДК 616.379-008.64:616-076:006.05

На крысах-самцах в условиях аллоксан-, стрептозотоцин-индуцированного и иммунозависимого экспериментального диабета изучены особенности ультраструктурных изменений инсулоцитов панкреатических островков. При аллоксан-индуцированном экспериментальном диабете выявлены грубые некробиотические изменения В-эндокриноцитов. Развитие стрептозотоцин-индуцированного и иммунозависимого экспериментального диабета сопровождаются как некробиотическими процессами, так и апоптозом в-клеток островков Лангерганса различной степени выраженности.

Ключевые слова: в-клетки, сахарный диабет, аллоксан, стрептозотоцин.

G. L. Snigur, A. V. Smirnov, M. V. Schmidt, M. J. Pocheptsov, M. P. Voronkova

COMPARATIVE ASPECTS OF CHANGES OF ULTRASTRUCTURAL ISLET PANCREATIC ISLETS IN EXPERIMENTAL DIABETES MELLITUS

In male rats in alloxan-, streptozotocin-induced experimental diabetes mellitus of immune characteristics and ultrastructural changes of pancreatic islets cells were studed. In alloxan-induced experimental diabetes mellitus revealed necrobiotic changes in b-endocrine cells. The development of experimental streptozotocin-induced and immunodependent diabetes mellitus accompanied by a necrobiotic processes and apoptosis in b-cells of islets of Langerhans of varying degrees of severity.

Key words: b-cells, diabetes mellitus, alloxan, streptozotocin

Одним из приоритетных направлений современной фармакологии является поиск новых лекарственных средств с селективным цитопротективным действием на в-эндокриноциты поджелудочной железы, которые обладают способностью регулировать процессы апоптоза. Достаточно хорошо изучены тканевые и клеточные изменения в панкреатических островках экспериментальных животных, возникающие на фоне экспериментального сахарного диабета при введении различных цитотоксинов [2]. Однако особенности ультраструктурных изменений инсулоцитов островков Лангерганса при их повреждении в сравнительном аспекте изучены недостаточно.

МЕТОДИКА ИССЛЕДОВАНИЯ

Исследование выполнено на 40 крысах-самцах, массой 300-340 грамм (интактная контрольная группа (*n* = 10), группы с экспериментальным сахарным диабетом: алоксан-индуцированным (*n* = 10), стрептозотоцин-индуцированным (*n* = 10), иммунозависимым (*n* = 10). Аллоксан-индуцированный диабет вызывали внутрибрюшинным введением аллоксана в дозе 120 мг/кг. Экспериментальный стрептозотоцин-индуцированный диабет моделировали однократным внутривенным введением стреп-

тозотоцина в дозе 45 мг/кг (Баранов А. Г., 1985). С целью моделирования иммунозависимого сахарного диабета производили ежедневные в/в инъекции стрептозотоцина (Sigma, США) в дозе 20 мг/кг в течение 5 суток. Через 7 суток осуществляли однократную подкожную инъекцию 0,2 мл полного адъюванта Фрейнда (США). [15]. У животных экспериментальных групп с моделями диабета после введения цитотоксинов определяли уровень гликемии. В последующий эксперимент производился отбор животных с уровнем сахара крови не ниже 15 ммоль/л (Akbarzadeh A., et al., 2007). Через 21 сутки животных выводили из эксперимента согласно правилам гуманного отношения и решением Регионального независимого этического комитета (№ 43-2006).

Электронно-микроскопическое исследование проводили на базе лаборатории морфологии и иммуногистохимии Волгоградского медицинского научного центра. Фиксацию фрагментов поджелудочной железы размером 1 мм³ производили в течение 12 часов в 4%-м растворе параформа на 0,1М какодилатном буфере с последующей постфиксацией в течение 2 часов в 1%-м растворе тетраокиси осмия на 0,1М какодилатном буфере (pH = 7,4) при температуре +4 °C. После промывки в растворе какодилатного буфера материал дегидратировали в спиртах возрастающей концентрации и заливали в смесь эпона и аралдита. Изготавливали полутонкие срезы с последующей окраской метиленовым синим. Ультратонкие срезы толщиной 50—90 нм получали на ультрамикротоме LKB-8800 и монтировали на медные сетки. После контрастирования в 2,5%-м растворе уранилацетата на 50 о этаноле в течение 40 минут и 0,3%-м растворе цитрата свинца в течение 20 минут срезы изучались в электронном микроскопе Tesla BS-500 при ускоряющем напряжении 60 кВ с фотодокументированием результатов.

Морфометрический анализ ультраструктурных изменений проводили с помощью компьютерной программы «ВидеоТестМорфо-4» (Россия, 2004). Определяли объёмную долю (%) и диаметр (нм) секреторных гранул инсулоцитов. Статистическую обработку данных проводили с использованием программы «ВидеоТестМорфо-4». Проводили расчет базовых статистических показателей (*M*, *m*), с использованием парного *t*-критерия Стьюдента при достоверности *p* < 0,05 [1].

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

В панкреатических островках интактных животных преобладали инсулоциты пирамидальной формы, которые располагались преимущественно в центральных отделах островков. Центрально расположенное ядро имело овальную форму, четко различимую ядерную оболочку с равномерным распределением хроматина. Ядрышки визуализировались не во всех в-эндокриноцитах. В цитоплазме определялись немногочисленные митохондрии овальной формы и секреторные гранулы с характерной электроноплотной сердцевиной округлой формы, которая отделялась от поверхности окружающей мембраны светлым аморфным ободком.

Часть инсулоцитов имели цитоплазму низкой, а другие умеренной электронной плотности. В в-эндокриноцитах с цитоплазмой низкой электронной плотности отмечалось хорошее развитие гранулярной эндоплазматической сети в виде большого количества укороченных цистерн, комплекс Гольджи был представлен хорошо различимыми эндосекреторными гранулами умеренной электронной плотности с аморфным содержимым (без электронной плотности с аморфным содержимым (без электронной плотной сердцевины), уплощенными цистернами и вакуолями, отмечалось равномерное расположение свободных рибосом и митохондрий. Секреторные гранулы занимали объемную долю — 14 %, а их диаметр колебался в пределах [383,4 ± 43,3] нм.

Гранулярная эндоплазматическая сеть была менее различима в инсулоцитах с цитоплазмой умеренной электронной плотности. Комплекс Гольджи был представлен уплощенными цистернами и небольшим количеством эндосекреторных гранул умеренной электронной плотности без электронно плотной сердцевины. Диаметр секреторных гранул вэндокриноцитов составлял — [412,1±47,4] нм., а их объемная доля — 12 %.

При аллоксан-индуцированном диабете в панкреатических островках определялись единичные вклетки с признаками деструкции в виде конденсации хроматина ядер, наличия липидных включений в цитоплазме, с расширением и вакуолизацией компонентов гранулярной эндоплазматической сети и комплекса Гольджи и отсутствием секреторных гранул. В большинстве клеток прослеживались набухание и частичная деструкция комплекса Гольджи и элементов эндоплазматической сети. Клеточная популяции инсулоцитов была неоднородной и подразделялась на клетки с цитоплазмой низкой и умеренной электронной плотности. В-клетки с цитоплазмой умеренной электронной плотности располагались как в центральных, так и в периферических отделах островков Лангерганса. Секреторные гранулы с электронно плотной сердцевиной располагались преимущественно у одного из полюсов клетки и занимали объемную долю в 12,2 %, их диаметр составлял [409.3 ± 32.8] нм. Большинство в-эндокриноцитов панкреатических островков имели цитоплазму низкой электронной плотности и располагались в виде крупных или мелких клеточных скоплений на границе с ацинарной тканью. Секреторные гранулы диаметром [439,0 ± 46,4] нм., с электронно плотной сердцевиной располагались преимущественно у полюсов клеток занимая объемную долю в 12,6 %. Часть секреторных гранула не имели электронно плотной сердцевины.

В В-клетках панкреатических островков при стрептозотоцин-индуцированном диабете отмечались определялись единичные в-клетки с конденсацией хроматина ядер, наличием липидных включений в цитоплазме. Происходило незначительное расширение и вакуолизация компонентов гранулярной эндоплазматической сети и комплекса Гольджи, с уменьшением или полным отсутствием секреторных гранул. В большинстве клеток прослеживались явления набухания и частичной деструкции элементов эндоплазматической сети и комплекса Гольджи. В островках также встречались инсулоциты с цитоплазмой низкой и умеренной электронной плотности, расположенные мозаично в пределах островков. Секреторные гранулы располагались полярно у одного из полюсов клетки, их объемная доля составляла 9,1 %, а диаметр [421,5 ± 52,3] нм. В-эндокриноциты, имеющие цитоплазму низкой электронной плотности, располагались в виде крупных или мелких скоплений на границе с ацинарной тканью. Секреторные гранулы диаметром [425,1 ± 40,9] нм., были расположены преимущественно у полюсов клеток, занимая объемную долю в 11,9 %. Электронно плотная сердцевина в части секреторных гранула отсутствовала.

У животных с моделью иммунозависимого СД, происходило выраженное уменьшение коли-

чества инсулоцитов, в некоторых островках Лангерганса определялись выраженные некротические изменения или разрастание соединительной ткани. Остатки в-эндокриноцитов располагались преимущественно в центральных отделах панкреатических островков в виде мелких групп или единичных клеток. Большинство инсулоцитов имело неправильную форму, резко вакуолизированную цитоплазму с неравномерным распределением в ней органелл. Визуализировались набухшие митохондрии, кариопикноз, фрагменты разрушенной гранулярной эндоплазматической сети и комплекса Гольджи, секреторные гранулы не определялись. В некоторых в-эндокриноцитах в цитоплазме отмечались единичные липидные включения, элементы гранулярной эндоплазматической сети и комплекса Гольджи были резко расширены и вакуолизированы, а ядерный хроматин конденсировался и располагался в периферических отделах ядра. Секреторные гранулы располагались хаотично как вокруг ядра, так и у плазмолеммы неравномерно в виде единичных скоплений. Их электронно-плотная сердцевина становилась более крупной по сравнению с группой интактных животных, а светлый аморфный ободок уменьшался.

В-эндокриноциты без признаков деструкции с цитоплазмой низкой электронной плотности сохраняли развитую гранулярную эндоплазматическую сеть и компоненты комплекса Гольджи. Секреторные гранулы с электронно плотной сердцевиной имели диаметр [435,4 ± 61,2] нм. и располагались преимущественно в периферических отделах цитоплазмы занимая объемную долю в 17 %. Количество эндосекреторных гранул без электронно плотной сердцевины достоверно возрастало по сравнению с интактной группой.

В инсулоцитах без признаков деструкции с цитоплазмой умеренной электронной плотности гранулярная эндоплазматическая сеть и комплекс Гольджи были представлены разрозненными цистернами и единичными эндосекреторными гранулами без электронно плотной сердцевины. Секреторные гранулы с электронно плотной сердцевиной имели диаметр [302,5 ± 43,4] нм, а их объемная доля составляла 10,3 %.

Ультраструктурные изменения в-клеток при токсическом действии стрептозотоцина и аллоксана характеризуются набуханием и деструкцией комплекса Гольджи и элементов эндоплазматической сети, что сопровождается уменьшением размеров и численности секреторных гранул и развитием необратимых некротических процессов [8, 10]. Однако, возможен и второй путь гибели инсулоцитов островков Лангерганса апоптоз, который ультрамикроскопически сопровождается конденсацией, маргинацией и фрагментацией хроматина ядер, набухание митохондрий, уплотнение цитоплазмы, формирование апоптотических телец, что проявляется в значительном уменьшение инсулоцитов и объёмной доли островков [9, 12].

При экспериментальном моделировании диабета необратимые повреждения затрагивают не все В-клетки, часть из них находятся в состоянии гипертрофии с выраженной дегрануляцией и уменьшением объёмной доли секреторных гранул [6, 11].

Известно, что конверсия проинсулина в инсулин происходит в секреторных гранулах комплекса Гольджи. По мере созревания секреторных гранул происходит уменьшение количества проинсулина и увеличение количества инсулина, что морфологически проявляется в появлении в центральных отделах гранулы электроно плотной сердцевины. Зрелые гранулы мигрируют к плазматической мембране, для дальнейшего слияния с ней и выброса инсулина в интерстициальное пространство, межклеточную жидкость и кровеносные капилляры. Таким образом, при увеличении потребности в инсулине в В-эндокриноцитах вначале происходит увеличение количества зрелых гранул и их объемной доли, с преимущественной локализацией на периферии клеток. По мере увеличения секреции инсулина количество зрелых секреторных гранул на периферии клетки уменьшается, а количество гранул без электронно плотной сердцевины в цитоплазме увеличивается.

Увеличение количества незрелых секреторных гранул, большое количество митохондрий характерно для В-клеток с цитоплазмой низкой электронной плотности, что отражает высокую степень их функциональной активности [6, 9].

Таким образом, различия в электронной плотности цитоплазмы В-клеток свидетельствуют о различной степени их функциональной активности. У интактных животных соотношение В-эндокриноцитов с цитоплазмой низкой и умеренной электронной плотности составляет 1:1, а при экспериментальном моделировании сахарного диабета преобладающим типом клеток оказывается популяция с цитоплазмой низкой электронной плотности [5].

ЗАКЛЮЧЕНИЕ

Ультрамикроскопические признаки необратимого повреждения В-эндокриноцитов определяются при всех экспериментальных моделях сахарного диабета и представлены изменениями характерными для некроза и апоптоза.

Наиболее выраженные некротические изменения отмечаются при аллоксан-индуцированном и стрептозотоцин-индуцированном диабете. Для иммунозависимого диабета наиболее характерны ультрамикроскопические признаки апоптоза с незначительными некротическими изменениями.

Сохранение типичной компартментализации в части В-клеток панкреатических островков при экспериментальном моделировании диабета отражает активацию репарационных процессов, как реакцию на повреждающее действие цитотоксинов.

ЛИТЕРАТУРА

1. Автандилов Г. Г. Основы количественной патологической анатомии. — М.: Медицина, 2002. — 240 с.

2. Балаболкин М. И. Лечение сахарного диабета и его поздних осложнений: руководство для врачей / М. И. Балаболкин, Е. М. Клебанова, В. М. Креминская. — М.: Медицина, 2005. — 512 с.

3. Иванова В. Ф., Пузырев А. А. Структурно-функциональные изменения в поджелудочной железе белой крысы при введении глюкозы // Морфология. — 2006. — Т. 129. — № 1. — С. 67—71.

3. Писарев В. Б., Снигур Г. Л., Спасов А. А. и др. Влияние гимнемовых кислот на гибель и репарацию в-эндокриноцитов при стрептозотоци-индуцированном диабете // Вестник Волгоградского государственного медицинского университета. Волгоград. 2010. №. 1. Т. 33. С. 38-40.

4. Севергина Э. С. Инсулинозависимый сахарный диабет — взгляд морфолога. — М.: Издательский дом Видар-М, 2002. — 152 с.

 5. Aughsteen A. A. An ultrastructural study on the effect of streptozotocin on the islets of Langerhans in mice // J. Electron Microscopy. — 2000. — Vol. 49, №. 5. — P. 681—690.
6. Bertalli E., Bendayan M. Association between

6. Bertalli E., Bendayan M. Association between endocrine pancreas and ductal system. More than an epiphenomenon of endocrine differentiation and development? // J. Histochem. & Cytochem. — 2005. — Vol. 53, №. 3. — P. 1071—1086. 7. Daisy Mythili M., Rashmi Vyas, Akila G., et al. Effect of streptozotocin on the ultrastructure of rat pancreatic islets // Microsc. Res. Tech. 2004. Vol. 63. № 5. P. 274 — 281.

8. Koji Y., Junichiro M., Masako W., et al. Proliferation and differentiation of pancreatic в-cells: ultrastructural analysis of the pancreas in diabetic mice induced by selective alloxan perfusion // Medical Electron Microscopy. — 1997. — Vol. 30, № 3. — P. 170—175.

 Lenzen S. // The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia. — 2008. — Vol. 51. — P. — 216—226. 10. Li L., Zhaohong Y., Masaharu S., Kojima I. Effect on

10. Li L., Zhaohong Y., Masaharu S., Kojima I. Effect on regeneration of pancreatic β -cell in neonatal streptozotocin-treated rats // Diabetes. — 2004. — Vol. 53, Nº. 3. — P. 608—615.

11. Papaccio G., Esposito V., Mezzogiorno V. Recovery of pancreatic B cells after Cyclosporin A treatment in bio breeding and Wistar rats // Micron and Microscopica Acta. — 1989. — Vol. 20, № 2. — P. 89—97.

12. Szkudelski T. The Mechanism of Alloxan and Streptozotocin Action in B Cells of the Rat Pancreas // Physiol. Res. — 2001. — Vol. 50, №. 6. — P. 536—546.

13. Trucco M. Reregeneration of the pancreatic β -cell // J. Clin. Investigation. — 2005. — Vol. 115, No. 1. — P. 5—12.

14. Vinik A., Pittenger G., Rafaeloff R. Determinants of pancreatic islets cell mass: a balance between neogenesis and senescence/apoptosis // Diabetes Rev. — 1996. — Vol. 4, № 2. — P. 235—263.

15. Ziegler B., Kohler E., Kloting I., et al. Survival of islet isografts despite cytotoxicity against pancreatic islets measured in vitro // Exp. Clin. Endocrinol. — 1990. — Vol. 95, №. 1. — P. 31—38.